
NetCDF Climate and Forecast
(CF) Metadata Conventions

Version 1.3, 7 November, 2008

Original Authors
Brian Eaton, NCAR

Jonathan Gregory, Hadley Centre, UK Met Office
Bob Drach, PCMDI, LLNL
Karl Taylor, PCMDI, LLNL

Steve Hankin, PMEL, NOAA

Additional Authors
John Caron, UCAR
Rich Signell, USGS

Phil Bentley, Hadley Centre, UK Met Office
Greg Rappa, MIT

NetCDF Climate and Forecast (CF) Metadata Conventions: Version
1.3, 7 November, 2008
by Brian Eaton, Jonathan Gregory, Bob Drach, Karl Taylor, and Steve Hankin
by John Caron, Rich Signell, Phil Bentley, and Greg Rappa

Many others have contributed to the development of CF through their participation in discussions about proposed
changes.
:

Abstract

This document describes the CF conventions for climate and forecast metadata designed to promote the processing and
sharing of files created with the netCDF Application Programmer Interface [NetCDF]. The conventions define meta-
data that provide a definitive description of what the data in each variable represents, and of the spatial and temporal
properties of the data. This enables users of data from different sources to decide which quantities are comparable, and
facilitates building applications with powerful extraction, regridding, and display capabilities.

The CF conventions generalize and extend the COARDS conventions [COARDS]. The extensions include metadata
that provides a precise definition of each variable via specification of a standard name, describes the vertical locations
corresponding to dimensionless vertical coordinate values, and provides the spatial coordinates of non-rectilinear grid-
ded data. Since climate and forecast data are often not simply representative of points in space/time, other extensions
provide for the description of coordinate intervals, multidimensional cells and climatological time coordinates, and
indicate how a data value is representative of an interval or cell. This standard also relaxes the COARDS constraints
on dimension order and specifies methods for reducing the size of datasets.

iii

Table of Contents
Preface .. vii
1. Introduction .. 1

1.1. Goals .. 1
1.2. Terminology ... 1
1.3. Overview ... 2
1.4. Relationship to the COARDS Conventions .. 4

2. NetCDF Files and Components .. 5
2.1. Filename .. 5
2.2. Data Types .. 5
2.3. Naming Conventions ... 5
2.4. Dimensions .. 5
2.5. Variables ... 6

2.5.1. Missing Data ... 6
2.6. Attributes ... 7

2.6.1. Identification of Conventions .. 7
2.6.2. Description of file contents .. 7

3. Description of the Data .. 9
3.1. Units ... 9
3.2. Long Name .. 10
3.3. Standard Name ... 10
3.4. Ancillary Data .. 11
3.5. Flags ... 12

4. Coordinate Types ... 15
4.1. Latitude Coordinate ... 15
4.2. Longitude Coordinate ... 16
4.3. Vertical (Height or Depth) Coordinate .. 16

4.3.1. Dimensional Vertical Coordinate ... 17
4.3.2. Dimensionless Vertical Coordinate ... 17

4.4. Time Coordinate ... 18
4.4.1. Calendar .. 19

5. Coordinate Systems .. 21
5.1. Independent Latitude, Longitude, Vertical, and Time Axes ... 21
5.2. Two-Dimensional Latitude, Longitude, Coordinate Variables .. 22
5.3. Reduced Horizontal Grid .. 23
5.4. Timeseries of Station Data .. 24
5.5. Trajectories .. 24
5.6. Grid Mappings and ProjectionsHorizontal Coordinate Reference Systems, Grid Mappings, and Pro-
jections .. 25
5.7. Scalar Coordinate Variables .. 28

6. Labels and Alternative Coordinates ... 30
6.1. Labels ... 30

6.1.1. Geographic Regions .. 30
6.2. Alternative Coordinates .. 31

7. Data Representative of Cells .. 32
7.1. Cell Boundaries .. 32
7.2. Cell Measures ... 34
7.3. Cell Methods .. 35
7.4. Climatological Statistics ... 38

8. Reduction of Dataset Size ... 42
8.1. Packed Data ... 42
8.2. Compression by Gathering .. 42

NetCDF Climate and Forecast
(CF) Metadata Conventions

iv

A. Attributes ... 44
B. Standard Name Table Format .. 48
C. Standard Name Modifiers ... 51
D. Dimensionless Vertical Coordinates ... 52
E. Cell Methods .. 57
F. Grid Mappings .. 58
G. Revision History ... 65
Bibliography ... 67

v

List of Tables
3.1. Supported Units .. 9
3.2. Flag Variable Bits (from Example) ... 13
3.3. Flag Variable Bit 2 and Bit 3 (from Example) .. 13
A.1. Attributes .. 44
C.1. Standard Name Modifiers ... 51
E.1. Cell Methods .. 57
F.1. Grid Mapping Attributes .. 62

vi

List of Examples
3.1. Use of standard_name .. 11
3.2. Instrument data ... 11
3.3. A flag variable, using flag_values .. 12
3.4. A flag variable, using flag_masks .. 12
3.5. A flag variable, using flag_masks and flag_values ... 13
4.1. Latitude axis ... 15
4.2. Longitude axis .. 16
4.3. Atmosphere sigma coordinate .. 17
4.4. Time axis ... 18
4.5. Perpetual time axis .. 19
4.6. Paleoclimate time axis .. 20
5.1. Independent coordinate variables .. 22
5.2. Two-dimensional coordinate variables ... 22
5.3. Reduced horizontal grid .. 23
5.4. Timeseries of station data ... 24
5.5. Trajectories .. 24
5.6. Rotated pole grid ... 25
5.7. Lambert conformal projection .. 26
5.8. Latitude and longitude on a spherical Earth ... 27
5.9. Latitude and longitude on the WGS 1984 datum ... 27
5.10. British National Grid .. 28
5.11. Multiple forecasts from a single analysis ... 29
6.1. Several parcel trajectories ... 30
6.2. Northward heat transport in Atlantic Ocean ... 30
6.3. Model level numbers ... 31
7.1. Cells on a latitude axis ... 33
7.2. Cells in a non-rectangular grid ... 33
7.3. Cell areas for a spherical geodesic grid ... 34
7.4. Methods applied to a timeseries ... 35
7.5. Surface air temperature variance .. 37
7.6. Climatological seasons ... 39
7.7. Decadal averages for January .. 39
7.8. Temperature for each hour of the average day .. 40
7.9. Temperature for each hour of the typical climatological day ... 40
7.10. Monthly-maximum daily precipitation totals ... 41
8.1. Horizontal compression of a three-dimensional array ... 43
8.2. Compression of a three-dimensional field .. 43
B.1. A name table containing three entries ... 49

vii

Preface
Home page:

Contains links to: previous draft and current working draft documents; applications for processing CF conforming
files; email list for discussion about interpretation, clarification, and proposals for changes or extensions to the
current conventions. http://www-pcmdi.llnl.gov/cf/

Revision history:
This document will be updated to reflect agreed changes to the standard and to correct mistakes according to the
rules of CF governance1. See Appendix G, Revision History for the full revision history. Changes with provisional
status use the following mark-up style: new text, deleted text, and [a comment].

1 http://cf-pcmdi.llnl.gov/governance

http://www-pcmdi.llnl.gov/cf/
http://cf-pcmdi.llnl.gov/governance
http://cf-pcmdi.llnl.gov/governance

1

Chapter 1. Introduction
1.1. Goals
The NetCDF library [NetCDF] is designed to read and write data that has been structured according to well-defined
rules and is easily ported across various computer platforms. The netCDF interface enables but does not require the
creation of self-describing datasets. The purpose of the CF conventions is to require conforming datasets to contain
sufficient metadata that they are self-describing in the sense that each variable in the file has an associated description
of what it represents, including physical units if appropriate, and that each value can be located in space (relative to
earth-based coordinates) and time.

An important benefit of a convention is that it enables software tools to display data and perform operations on specified
subsets of the data with minimal user intervention. It is possible to provide the metadata describing how a field is
located in time and space in many different ways that a human would immediately recognize as equivalent. The purpose
in restricting how the metadata is represented is to make it practical to write software that allows a machine to parse
that metadata and to automatically associate each data value with its location in time and space. It is equally important
that the metadata be easy for human users to write and to understand.

This standard is intended for use with climate and forecast data, for atmosphere, surface and ocean, and was designed
with model-generated data particularly in mind. We recognise that there are limits to what a standard can practically
cover; we restrict ourselves to issues that we believe to be of common and frequent concern in the design of climate and
forecast metadata. Our main purpose therefore, is to propose a clear, adequate and flexible definition of the metadata
needed for climate and forecast data. Although this is specifically a netCDF standard, we feel that most of the ideas are
of wider application. The metadata objects could be contained in file formats other than netCDF. Conversion of the
metadata between files of different formats will be facilitated if conventions for all formats are based on similar ideas.

This convention is designed to be backward compatible with the COARDS conventions [COARDS], by which we
mean that a conforming COARDS dataset also conforms to the CF standard. Thus new applications that implement
the CF conventions will be able to process COARDS datasets.

We have also striven to maximize conformance to the COARDS standard, that is, wherever the COARDS metadata
conventions provide an adequate description we require their use. Extensions to COARDS are implemented in a manner
such that the content that doesn't depend on the extensions is still accessible to applications that adhere to the COARDS
standard.

1.2. Terminology
The terms in this document that refer to components of a netCDF file are defined in the NetCDF User's Guide (NUG)
[NUG] NUG. Some of those definitions are repeated below for convenience.

auxiliary coordinate variable
Any netCDF variable that contains coordinate data, but is not a coordinate variable (in the sense of that term
defined by the NUG and used by this standard - see below). Unlike coordinate variables, there is no relationship
between the name of an auxiliary coordinate variable and the name(s) of its dimension(s).

boundary variable
A boundary variable is associated with a variable that contains coordinate data. When a data value provides
information about conditions in a cell occupying a region of space/time or some other dimension, the boundary
variable provides a description of cell extent.

CDL syntax
The ascii format used to describe the contents of a netCDF file is called CDL (network Common Data form
Language). This format represents arrays using the indexing conventions of the C programming language, i.e.,

Introduction

2

index values start at 0, and in multidimensional arrays, when indexing over the elements of the array, it is the
last declared dimension that is the fastest varying in terms of file storage order. The netCDF utilities ncdump and
ncgen use this format (see chapter 10 of the NUG 1). All examples in this document use CDL syntax.

cell
A region in one or more dimensions whose boundary can be described by a set of vertices. The term interval is
sometimes used for one-dimensional cells.

coordinate variable
We use this term precisely as it is defined in section 2.3.1 of the NUG 2 . It is a one-dimensional variable with
the same name as its dimension [e.g., time(time)], and it is defined as a numeric data type with values that
are ordered monotonically. Missing values are not allowed in coordinate variables.

grid mapping variable
A variable used as a container for attributes that define a specific grid mapping. The type of the variable is arbitrary
since it contains no data.

latitude dimension
A dimension of a netCDF variable that has an associated latitude coordinate variable.

longitude dimension
A dimension of a netCDF variable that has an associated longitude coordinate variable.

multidimensional coordinate variable
An auxiliary coordinate variable that is multidimensional.

recommendation
Recommendations in this convention are meant to provide advice that may be helpful for reducing common mis-
takes. In some cases we have recommended rather than required particular attributes in order to maintain back-
wards compatibility with COARDS. An application must not depend on a dataset's adherence to recommendations.

scalar coordinate variable
A scalar variable that contains coordinate data. Functionally equivalent to either a size one coordinate variable
or a size one auxiliary coordinate variable.

spatiotemporal dimension
A dimension of a netCDF variable that is used to identify a location in time and/or space.

time dimension
A dimension of a netCDF variable that has an associated time coordinate variable.

vertical dimension
A dimension of a netCDF variable that has an associated vertical coordinate variable.

1.3. Overview
No variable or dimension names are standardized by this convention. Instead we follow the lead of the NUG and
standardize only the names of attributes and some of the values taken by those attributes. The overview provided in
this section will be followed with more complete descriptions in following sections. Appendix A, Attributes contains
a summary of all the attributes used in this convention.

We recommend that the NUG defined attribute Conventions be given the string value "CF-1.2" "CF-1.3" to
identify datasets that conform to these conventions.

1 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-15.html#HEADING15-0
2 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-7.html#HEADING7-67

http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-15.html#HEADING15-0
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-7.html#HEADING7-67
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-15.html#HEADING15-0
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-7.html#HEADING7-67

Introduction

3

The general description of a file's contents should be contained in the following attributes: title, history, in-
stitution, source, comment and references (Section 2.6.2, “Description of file contents”). For backwards
compatibility with COARDS none of these attributes is required, but their use is recommended to provide human
readable documentation of the file contents.

Each variable in a netCDF file has an associated description which is provided by the attributes units, long_name,
and standard_name. The units, and long_name attributes are defined in the NUG and the standard_name
attribute is defined in this document.

The units attribute is required for all variables that represent dimensional quantities (except for boundary variables
defined in Section 7.1, “Cell Boundaries”. The values of the units attributes are character strings that are recognized
by UNIDATA's Udunits package [UDUNITS], (with exceptions allowed as discussed in Section 3.1, “Units”).

The long_name and standard_name attributes are used to describe the content of each variable. For backwards
compatibility with COARDS neither is required, but use of at least one of them is strongly recommended. The use
of standard names will facilitate the exchange of climate and forecast data by providing unambiguous identification
of variables most commonly analyzed.

Four types of coordinates receive special treatment by these conventions: latitude, longitude, vertical, and time. Every
variable must have associated metadata that allows identification of each such coordinate that is relevant. Two inde-
pendent parts of the convention allow this to be done. There are conventions that identify the variables that contain
the coordinate data, and there are conventions that identify the type of coordinate represented by that data.

There are two methods used to identify variables that contain coordinate data. The first is to use the NUG-defined "co-
ordinate variables." The use of coordinate variables is required for all dimensions that correspond to one dimensional
space or time coordinates. In cases where coordinate variables are not applicable, the variables containing coordinate
data are identified by the coordinates attribute.

Once the variables containing coordinate data are identified, further conventions are required to determine the type of
coordinate represented by each of these variables. Latitude, longitude, and time coordinates are identified solely by
the value of their units attribute. Vertical coordinates with units of pressure may also be identified by the units
attribute. Other vertical coordinates must use the attribute positive which determines whether the direction of
increasing coordinate value is up or down. Because identification of a coordinate type by its units involves the use
of an external software package [UDUNITS], we provide the optional attribute axis for a direct identification of
coordinates that correspond to latitude, longitude, vertical, or time axes.

Latitude, longitude, and time are defined by internationally recognized standards, and hence, identifying the coordi-
nates of these types is sufficient to locate data values uniquely with respect to time and a point on the earth's surface.
On the other hand identifying the vertical coordinate is not necessarily sufficient to locate a data value vertically with
respect to the earth's surface. In particular a model may output data on the dimensionless vertical coordinate used in its
mathematical formulation. To achieve the goal of being able to spatially locate all data values, this convention includes
the definitions of common dimensionless vertical coordinates in Appendix D, Dimensionless Vertical Coordinates.
These definitions provide a mapping between the dimensionless coordinate values and dimensional values that can
be uniquely located with respect to a point on the earth's surface. The definitions are associated with a coordinate
variable via the standard_name and formula_terms attributes. For backwards compatibility with COARDS
use of these attributes is not required, but is strongly recommended.

It is often the case that data values are not representative of single points in time and/or space, but rather of intervals or
multidimensional cells. This convention defines a bounds attribute to specify the extent of intervals or cells. When
data that is representative of cells can be described by simple statistical methods, those methods can be indicated using
the cell_methods attribute. An important application of this attribute is to describe climatological and diurnal
statistics.

Methods for reducing the total volume of data include both packing and compression. Packing reduces the data
volume by reducing the precision of the stored numbers. It is implemented using the attributes add_offset and

Introduction

4

scale_factor which are defined in the NUG. Compression on the other hand loses no precision, but reduces the
volume by not storing missing data. The attribute compress is defined for this purpose.

1.4. Relationship to the COARDS Conventions
These conventions generalize and extend the COARDS conventions [COARDS]. A major design goal has been to
maintain backward compatibility with COARDS. Hence applications written to process datasets that conform to these
conventions will also be able to process COARDS conforming datasets. We have also striven to maximize conformance
to the COARDS standard so that datasets that only require the metadata that was available under COARDS will
still be able to be processed by COARDS conforming applications. But because of the extensions that provide new
metadata content, and the relaxation of some COARDS requirements, datasets that conform to these conventions
will not necessarily be recognized by applications that adhere to the COARDS conventions. The features of these
conventions that allow writing netCDF files that are not COARDS conforming are summarized below.

COARDS standardizes the description of grids composed of independent latitude, longitude, vertical, and time axes.
In addition to standardizing the metadata required to identify each of these axis types COARDS restricts the axis
(equivalently dimension) ordering to be longitude, latitude, vertical, and time (with longitude being the most rapidly
varying dimension). Because of I/O performance considerations it may not be possible for models to output their
data in conformance with the COARDS requirement. The CF convention places no rigid restrictions on the order of
dimensions, however we encourage data producers to make the extra effort to stay within the COARDS standard order.
The use of non-COARDS axis ordering will render files inaccessible to some applications and limit interoperability.
Often a buffering operation can be used to miminize performance penalties when axis ordering in model code does
not match the axis ordering of a COARDS file.

COARDS addresses the issue of identifying dimensionless vertical coordinates, but does not provide any mechanism
for mapping the dimensionless values to dimensional ones that can be located with respect to the earth's surface.
For backwards compatibility we continue to allow (but do not require) the units attribute of dimensionless vertical
coordinates to take the values "level", "layer", or "sigma_level." But we recommend that the standard_name and
formula_terms attributes be used to identify the appropriate definition of the dimensionless vertical coordinate
(see Section 4.3.2, “Dimensionless Vertical Coordinate”).

The CF conventions define attributes which enable the description of data properties that are outside the scope of
the COARDS conventions. These new attributes do not violate the COARDS conventions, but applications that only
recognize COARDS conforming datasets will not have the capabilities that the new attributes are meant to enable.
Briefly the new attributes allow:

• Identification of quantities using standard names.

• Description of dimensionless vertical coordinates.

• Associating dimensions with auxiliary coordinate variables.

• Linking data variables to scalar coordinate variables.

• Associating dimensions with labels.

• Description of intervals and cells.

• Description of properties of data defined on intervals and cells.

• Description of climatological statistics.

• Data compression for variables with missing values.

5

Chapter 2. NetCDF Files and
Components
The components of a netCDF file are described in section 2 of the NUG [NUG]. In this section we describe conventions
associated with filenames and the basic components of a netCDF file. We also introduce new attributes for describing
the contents of a file.

2.1. Filename
NetCDF files should have the file name extension ".nc".

2.2. Data Types
The netCDF data types char, byte, short, int, float or real, and double are all acceptable. The char
type is not intended for numeric data. One byte numeric data should be stored using the byte data type. All integer
types are treated by the netCDF interface as signed. It is possible to treat the byte type as unsigned by using the NUG
convention of indicating the unsigned range using the valid_min, valid_max, or valid_range attributes.

NetCDF does not support a character string type, so these must be represented as character arrays. In this document, a
one dimensional array of character data is simply referred to as a "string". An n-dimensional array of strings must be
implemented as a character array of dimension (n,max_string_length), with the last (most rapidly varying) dimension
declared large enough to contain the longest string in the array. All the strings in a given array are therefore defined to
be equal in length. For example, an array of strings containing the names of the months would be dimensioned (12,9)
in order to accommodate "September", the month with the longest name.

2.3. Naming Conventions
Variable, dimension and attribute names should begin with a letter and be composed of letters, digits, and underscores.
Note that this is in conformance with the COARDS conventions, but is more restrictive than the netCDF interface
which allows use of the hyphen character. The netCDF interface also allows leading underscores in names, but the
NUG states that this is reserved for system use.

Case is significant in netCDF names, but it is recommended that names should not be distinguished purely by case,
i.e., if case is disregarded, no two names should be the same. It is also recommended that names should be obviously
meaningful, if possible, as this renders the file more effectively self-describing.

This convention does not standardize any variable or dimension names. Attribute names and their contents, where
standardized, are given in English in this document and should appear in English in conforming netCDF files for
the sake of portability. Languages other than English are permitted for variables, dimensions, and non-standardized
attributes. The content of some standardized attributes are string values that are not standardized, and thus are not
required to be in English. For example, a description of what a variable represents may be given in a non-English
language using the long_name attribute (see Section 3.2, “Long Name”) whose contents are not standardized, but
a description given by the standard_name attribute (see Section 3.3, “Standard Name”) must be taken from the
standard name table which is in English.

2.4. Dimensions
A variable may have any number of dimensions, including zero, and the dimensions must all have different names.
COARDS strongly recommends limiting the number of dimensions to four, but we wish to allow greater flexibility.

NetCDF Files and Components

6

The dimensions of the variable define the axes of the quantity it contains. Dimensions other than those of space and
time may be included. Several examples can be found in this document. Under certain circumstances, one may need
more than one dimension in a particular quantity. For instance, a variable containing a two-dimensional probability
density function might correlate the temperature at two different vertical levels, and hence would have temperature
on both axes.

If any or all of the dimensions of a variable have the interpretations of "date or time" (T), "height or depth" (Z), "lati-
tude" (Y), or "longitude" (X) then we recommend, but do not require (see Section 1.4, “Relationship to the COARDS
Conventions”), those dimensions to appear in the relative order T, then Z, then Y, then X in the CDL definition cor-
responding to the file. All other dimensions should, whenever possible, be placed to the left of the spatiotemporal
dimensions.

Dimensions may be of any size, including unity. When a single value of some coordinate applies to all the values
in a variable, the recommended means of attaching this information to the variable is by use of a dimension of size
unity with a one-element coordinate variable. It is also acceptable to use a scalar coordinate variable which eliminates
the need for an associated size one dimension in the data variable. The advantage of using a coordinate variable is
that all its attributes can be used to describe the single-valued quantity, including boundaries. For example, a variable
containing data for temperature at 1.5 m above the ground has a single-valued coordinate supplying a height of 1.5
m, and a time-mean quantity has a single-valued time coordinate with an associated boundary variable to record the
start and end of the averaging period.

2.5. Variables
This convention does not standardize variable names.

NetCDF variables that contain coordinate data are referred to as coordinate variables, auxiliary coordinate variables,
scalar coordinate variables, or multidimensional coordinate variables.

2.5.1. Missing Data
The NUG conventions (NUG section 8.11) provide the _FillValue, valid_min, valid_max, and
valid_range attributes to indicate missing data.

The NUG conventions for missing data changed significantly between version 2.3 and version 2.4. Since version 2.4 the
NUG defines missing data as all values outside of the valid_range, and specifies how the valid_range should
be defined from the _FillValue (which has library specified default values) if it hasn't been explicitly specified.
If only one missing value is needed for a variable then we strongly recommend that this value be specified using the
_FillValue attribute. Doing this guarantees that the missing value will be recognized by generic applications that
follow either the before or after version 2.4 conventions.

The scalar attribute with the name _FillValue and of the same type as its variable is recognized by the netCDF
library as the value used to pre-fill disk space allocated to the variable. This value is considered to be a special value
that indicates undefined or missing data, and is returned when reading values that were not written. The _FillValue
should be outside the range specified by valid_range (if used) for a variable. The netCDF library defines a default
fill value for each data type (NUG section 7.162).

The missing_value attribute is considered deprecated by the NUG and we do not recommend its use. However
for backwards compatibility with COARDS this standard continues to recognize the use of the missing_value
attribute to indicate undefined or missing data.

The missing values of a variable with scale_factor and/or add_offset attributes (see section Section 8.1,
“Packed Data”) are interpreted relative to the variable's external values, i.e., the values stored in the netCDF file.

1 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
2 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-12.html#HEADING12-1381

http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-12.html#HEADING12-1381
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-12.html#HEADING12-1381

NetCDF Files and Components

7

Applications that process variables that have attributes to indicate both a transformation (via a scale and/or offset) and
missing values should first check that a data value is valid, and then apply the transformation. Note that values that
are identified as missing should not be transformed. Since the missing value is outside the valid range it is possible
that applying a transformation to it could result in an invalid operation. For example, the default _FillValue is
very close to the maximum representable value of IEEE single precision floats, and multiplying it by 100 produces
an "Infinity" (using single precision arithmetic).

2.6. Attributes
This standard describes many attributes (some mandatory, others optional), but a file may also contain non-standard
attributes. Such attributes do not represent a violation of this standard. Application programs should ignore attributes
that they do not recognise or which are irrelevant for their purposes. Conventional attribute names should be used
wherever applicable. Non-standard names should be as meaningful as possible. Before introducing an attribute, con-
sideration should be given to whether the information would be better represented as a variable. In general, if a pro-
posed attribute requires ancillary data to describe it, is multidimensional, requires any of the defined netCDF dimen-
sions to index its values, or requires a significant amount of storage, a variable should be used instead. When this
standard defines string attributes that may take various prescribed values, the possible values are generally given in
lower case. However, applications programs should not be sensitive to case in these attributes. Several string attributes
are defined by this standard to contain "blank-separated lists". Consecutive words in such a list are separated by one
or more adjacent spaces. The list may begin and end with any number of spaces. See Appendix A, Attributes for a
list of attributes described by this standard.

2.6.1. Identification of Conventions
We recommend that netCDF files that follow these conventions indicate this by setting the NUG defined global at-
tribute Conventions to the string value "CF-1.2" "CF-1.3" . The string is interpreted as a directory name relative
to a directory that is a repository of documents describing sets of discipline-specific conventions. The conventions
directory name is currently interpreted relative to the directory pub/netcdf/Conventions/ on the host machine
ftp.unidata.ucar.edu. The web based versions of this document are linked from the netCDF Conventions
web page 3.

2.6.2. Description of file contents
The following attributes are intended to provide information about where the data came from and what has been done
to it. This information is mainly for the benefit of human readers. The attribute values are all character strings. For
readability in ncdump outputs it is recommended to embed newline characters into long strings to break them into
lines. For backwards compatibility with COARDS none of these global attributes is required.

The NUG defines title and history to be global attributes. We wish to allow the newly defined attributes, i.e.,
institution, source, references, and comment, to be either global or assigned to individual variables.
When an attribute appears both globally and as a variable attribute, the variable's version has precedence.

title
A succinct description of what is in the dataset.

institution
Specifies where the original data was produced.

source
The method of production of the original data. If it was model-generated, source should name the model and its
version, as specifically as could be useful. If it is observational, source should characterize it (e.g., "surface
observation" or "radiosonde").

3 http://www.unidata.ucar.edu/packages/netcdf/conventions.html

http://www.unidata.ucar.edu/packages/netcdf/conventions.html
http://www.unidata.ucar.edu/packages/netcdf/conventions.html
http://www.unidata.ucar.edu/packages/netcdf/conventions.html

NetCDF Files and Components

8

history
Provides an audit trail for modifications to the original data. Well-behaved generic netCDF filters will automat-
ically append their name and the parameters with which they were invoked to the global history attribute of an
input netCDF file. We recommend that each line begin with a timestamp indicating the date and time of day that
the program was executed.

references
Published or web-based references that describe the data or methods used to produce it.

comment
Miscellaneous information about the data or methods used to produce it.

9

Chapter 3. Description of the Data
The attributes described in this section are used to provide a description of the content and the units of measurement
for each variable. We continue to support the use of the units and long_name attributes as defined in COARDS.
We extend COARDS by adding the optional standard_name attribute which is used to provide unique identifiers
for variables. This is important for data exchange since one cannot necessarily identify a particular variable based on
the name assigned to it by the institution that provided the data.

The standard_name attribute can be used to identify variables that contain coordinate data. But since it is an
optional attribute, applications that implement these standards must continue to be able to identify coordinate types
based on the COARDS conventions.

3.1. Units
The units attribute is required for all variables that represent dimensional quantities (except for boundary vari-
ables defined in Section 7.1, “Cell Boundaries” and climatology variables defined in Section 7.4, “Climatological
Statistics”). The value of the units attribute is a string that can be recognized by UNIDATA"s Udunits package
[UDUNITS], with a few exceptions that are given below. The Udunits package1 includes a file udunits.dat, which
lists its supported unit names. Note that case is significant in the units strings.

The COARDS convention prohibits the unit degrees altogether, but this unit is not forbidden by the CF convention
because it may in fact be appropriate for a variable containing, say, solar zenith angle. The unit degrees is also
allowed on coordinate variables such as the latitude and longitude coordinates of a transformed grid. In this case the
coordinate values are not true latitudes and longitudes which must always be identified using the more specific forms
of degrees as described in Section 4.1, “Latitude Coordinate” and Section 4.2, “Longitude Coordinate”.

Units are not required for dimensionless quantities. A variable with no units attribute is assumed to be dimensionless.
However, a units attribute specifying a dimensionless unit may optionally be included. The Udunits package defines a
few dimensionless units, such as percent, but is lacking commonly used units such as ppm (parts per million). This
convention does not support the addition of new dimensionless units that are not udunits compatible. The conforming
unit for quantities that represent fractions, or parts of a whole, is "1". The conforming unit for parts per million is "1e-6".
Descriptive information about dimensionless quantities, such as sea-ice concentration, cloud fraction, probability, etc.,
should be given in the long_name or standard_name attributes (see below) rather than the units.

The units level, layer, and sigma_level are allowed for dimensionless vertical coordinates to maintain back-
wards compatibility with COARDS. These units are not compatible with Udunits and are deprecated by this stan-
dard because conventions for more precisely identifying dimensionless vertical coordinates are introduced (see Sec-
tion 4.3.2, “Dimensionless Vertical Coordinate”).

The Udunits syntax that allows scale factors and offsets to be applied to a unit is not supported by this standard. The
application of any scale factors or offsets to data should be indicated by the scale_factor and add_offset
attributes. Use of these attributes for data packing, which is their most important application, is discussed in detail in
Section 8.1, “Packed Data”.

Udunits recognizes the following prefixes and their abbreviations.

Table 3.1. Supported Units

Factor Prefix Abbreviation Factor Prefix Abbreviation

1e1 deca,deka da 1e-1 deci d

1 http://www.unidata.ucar.edu/software/udunits/

http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/

Description of the Data

10

Factor Prefix Abbreviation Factor Prefix Abbreviation

1e2 hecto h 1e-2 centi c

1e3 kilo k 1e-3 milli m

1e6 mega M 1e-6 micro u

1e9 giga G 1e-9 nano n

1e12 tera T 1e-12 pico p

1e15 peta P 1e-15 femto f

1e18 exa E 1e-18 atto a

1e21 zetta Z 1e-21 zepto z

1e24 yotta Y 1e-24 yocto y

3.2. Long Name
The long_name attribute is defined by the NUG to contain a long descriptive name which may, for example, be used
for labeling plots. For backwards compatibility with COARDS this attribute is optional. But it is highly recommended
that either this or the standard_name attribute defined in the next section be provided to make the file self-describ-
ing. If a variable has no long_name attribute then an application may use, as a default, the standard_name if
it exists, or the variable name itself.

3.3. Standard Name
A fundamental requirement for exchange of scientific data is the ability to describe precisely the physical quantities
being represented. To some extent this is the role of the long_name attribute as defined in the NUG. However,
usage of long_name is completely ad-hoc. For some applications it would be desirable to have a more definitive
description of the quantity, which would allow users of data from different sources to determine whether quantities
were in fact comparable. For this reason an optional mechanism for uniquely associating each variable with a standard
name is provided.

A standard name is associated with a variable via the attribute standard_name which takes a string value comprised
of a standard name optionally followed by one or more blanks and a standard name modifier (a string value from
Appendix C, Standard Name Modifiers).

The set of permissible standard names is contained in the standard name table. The table entry for each standard name
contains the following:

standard name
The name used to identify the physical quantity. A standard name contains no whitespace and is case sensitive.

canonical units
Representative units of the physical quantity. Unless it is dimensionless, a variable with a standard_name
attribute must have units which are physically equivalent (not necessarily identical) to the canonical units, possibly
modified by an operation specified by either the standard name modifier (see below and Appendix C, Standard
Name Modifiers) or by the cell_methods attribute (see Section 7.3, “Cell Methods” and Appendix E, Cell
Methods).

description
The description is meant to clarify the qualifiers of the fundamental quantities such as which surface a quantity is
defined on or what the flux sign conventions are. We don"t attempt to provide precise definitions of fundumental
physical quantities (e.g., temperature) which may be found in the literature.

Description of the Data

11

When appropriate, the table entry also contains the corresponding GRIB parameter code(s) (from ECMWF and NCEP)
and AMIP identifiers.

The standard name table is located at http://cf-pcmdi.llnl.gov/documents/cf-standard-names/current/cf-stan-
dard-name-table.xml , written in compliance with the XML format, as described in Appendix B, Standard Name Table
Format. Knowledge of the XML format is only necessary for application writers who plan to directly access the table.
A formatted text version of the table is provided at http://cf-pcmdi.llnl.gov/documents/cf-standard-names/current/cf-
standard-name-table.html , and this table may be consulted in order to find the standard name that should be assigned
to a variable.

Standard names by themselves are not always sufficient to describe a quantity. For example, a variable may contain
data to which spatial or temporal operations have been applied. Or the data may represent an uncertainty in the mea-
surement of a quantity. These quantity attributes are expressed as modifiers of the standard name. Modifications due
to common statistical operations are expressed via the cell_methods attribute (see Section 7.3, “Cell Methods”
and Appendix E, Cell Methods). Other types of quantity modifiers are expressed using the optional modifier part of
the standard_name attribute. The permissible values of these modifiers are given in Appendix C, Standard Name
Modifiers.

Example 3.1. Use of standard_name

float psl(lat,lon) ;
 psl:long_name = "mean sea level pressure" ;
 psl:units = "hPa" ;
 psl:standard_name = "air_pressure_at_sea_level" ;

The description in the standard name table entry for air_pressure_at_sea_level clarifies that "sea level"
refers to the mean sea level, which is close to the geoid in sea areas.

Here are lists of equivalences between the CF standard names and the standard names from the ECMWF GRIB tables2,
the NCEP GRIB tables3, and the PCMDI tables4.

3.4. Ancillary Data
When one data variable provides metadata about the individual values of another data variable it may be desirable to
express this association by providing a link between the variables. For example, instrument data may have associated
measures of uncertainty. The attribute ancillary_variables is used to express these types of relationships. It
is a string attribute whose value is a blank separated list of variable names. The nature of the relationship between
variables associated via ancillary_variables must be determined by other attributes. The variables listed by the
ancillary_variables attribute will often have the standard name of the variable which points to them including
a modifier (Appendix C, Standard Name Modifiers) to indicate the relationship.

Example 3.2. Instrument data

 float q(time) ;
 q:standard_name = "specific_humidity" ;
 q:units = "g/g" ;
 q:ancillary_variables = "q_error_limit q_detection_limit" ;

2 http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ecmwf-grib-mapping
3 http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ncep-grib-code-cf-standard-name-mapping
4 http://cf-pcmdi.llnl.gov/documents/cf-standard-names/pcmdi-name-cf-standard-name-mapping

http://cf-pcmdi.llnl.gov/documents/cf-standard-names/current/cf-standard-name-table.xml
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/current/cf-standard-name-table.xml
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/current/cf-standard-name-table.html
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/current/cf-standard-name-table.html
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ecmwf-grib-mapping
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ncep-grib-code-cf-standard-name-mapping
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/pcmdi-name-cf-standard-name-mapping
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ecmwf-grib-mapping
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ncep-grib-code-cf-standard-name-mapping
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/pcmdi-name-cf-standard-name-mapping

Description of the Data

12

 float q_error_limit(time)
 q_error_limit:standard_name = "specific_humidity standard_error" ;
 q_error_limit:units = "g/g" ;
 float q_detection_limit(time)
 q_detection_limit:standard_name = "specific_humidity detection_minimum" ;
 q_detection_limit:units = "g/g" ;

3.5. Flags
The attributes flag_values, flag_masks and flag_meanings are intended to make variables that contain flag
values self describing. Status codes and Boolean (binary) condition flags may be expressed with different combinations
of flag_values and flag_masks attribute definitions.

The flag_values and flag_meanings attributes describe a status flag consisting of mutually exclusive coded
values. The flag_values attribute is the same type as the variable to which it is attached, and contains a list of the
possible flag values. The flag_meanings attribute is a string whose value is a blank separated list of descriptive
words or phrases, one for each flag value. If multi-word phrases are used to describe the flag values, then the words
within a phrase should be connected with underscores. The following example illustrates the use of flag values to
express a speed quality with an enumerated status code.

Example 3.3. A flag variable, using flag_values

 byte current_speed_qc(time, depth, lat, lon) ;
 current_speed_qc:long_name = "Current Speed Quality" ;
 current_speed_qc:standard_name = "sea_water_speed status_flag" ;
 current_speed_qc:_FillValue = -128b ;
 current_speed_qc:valid_range = 0b, 2b-127b, 127b ;
 current_speed_qc:flag_values = 0b, 1b, 2b ;
 current_speed_qc:flag_meanings = "quality_good sensor_nonfunctional
 outside_valid_range" ;

The flag_masks and flag_meanings attributes describe a number of independent Boolean conditions using bit
field notation by setting unique bits in each flag_masks value. The flag_masks attribute is the same type as
the variable to which it is attached, and contains a list of values matching unique bit fields. The flag_meanings
attribute is defined as above, one for each flag_masks value. A flagged condition is identified by performing a
bitwise AND of the variable value and each flag_masks value; a non-zero result indicates a true condition. Thus,
any or all of the flagged conditions may be true, depending on the variable bit settings. The following example
illustrates the use of flag_masks to express six sensor status conditions.

Example 3.4. A flag variable, using flag_masks

 byte sensor_status_qc(time, depth, lat, lon) ;
 sensor_status_qc:long_name = "Sensor Status" ;
 sensor_status_qc:_FillValue = 0b ;
 sensor_status_qc:valid_range = 1b, 63b ;
 sensor_status_qc:flag_masks = 1b, 2b, 4b, 8b, 16b, 32b ;
 sensor_status_qc:flag_meanings = "low_battery processor_fault
 memory_fault disk_fault
 software_fault
 maintenance_required" ;

Description of the Data

13

The flag_masks, flag_values and flag_meanings attributes, used together, describe a blend of independent
Boolean conditions and enumerated status codes. The flag_masks and flag_values attributes are both the same
type as the variable to which they are attached. A flagged condition is identified by a bitwise AND of the variable value
and each flag_masks value; a result that matches the flag_values value indicates a true condition. Repeated
flag_masks define a bit field mask that identifies a number of status conditions with different flag_values.
The flag_meanings attribute is defined as above, one for each flag_masks bit field and flag_values defi-
nition. Each flag_values and flag_masks value must coincide with a flag_meanings value. The following
example illustrates the use of flag_masks and flag_values to express two sensor status conditions and one
enumerated status code.

Example 3.5. A flag variable, using flag_masks and flag_values

 byte sensor_status_qc(time, depth, lat, lon) ;
 sensor_status_qc:long_name = "Sensor Status" ;
 sensor_status_qc:_FillValue = 0b ;
 sensor_status_qc:valid_range = 1b, 15b ;
 sensor_status_qc:flag_masks = 1b, 2b, 12b, 12b, 12b ;
 sensor_status_qc:flag_values = 1b, 2b, 4b, 8b, 12b ;
 sensor_status_qc:flag_meanings =
 "low_battery
 hardware_fault
 offline_mode calibration_mode maintenance_mode" ;

In this case, mutually exclusive values are blended with Boolean values to maximize use of the available bits in a
flag value. The table below represents the four binary digits (bits) expressed by the sensor_status_qc variable
in the previous example.

Bit 0 and Bit 1 are Boolean values indicating a low battery condition and a hardware fault, respectively. The next two
bits (Bit 2 and Bit 3) express an enumeration indicating abnormal sensor operating modes. Thus, if Bit 0 is set, the
battery is low and if Bit 1 is set, there is a hardware fault - independent of the current sensor operating mode.

Table 3.2. Flag Variable Bits (from Example)

Bit 3
(MSB)

Bit 2 Bit 1 Bit 0
(LSB)

 H/W Fault Low Batt

The remaining bits (Bit 2 and Bit 3) are decoded as follows:

Table 3.3. Flag Variable Bit 2 and Bit 3 (from Example)

Bit 3 Bit 2 Mode

0 1 offline_mode

1 0 calibration_mode

1 1 maintenance_mode

The "12b" flag mask is repeated in the sensor_status_qc flag_masks definition to explicitly declare the rec-
ommended bit field masks to repeatedly AND with the variable value while searching for matching enumerated values.
An application determines if any of the conditions declared in the flag_meanings list are true by simply iterating

Description of the Data

14

through each of the flag_masks and AND'ing them with the variable. When a result is equal to the corresponding
flag_values element, that condition is true. The repeated flag_masks enable a simple mechanism for clients
to detect all possible conditions.

15

Chapter 4. Coordinate Types
Four types of coordinates receive special treatment by these conventions: latitude, longitude, vertical, and time. We
continue to support the special role that the units and positive attributes play in the COARDS convention to
identify coordinate type. We extend COARDS by providing explicit definitions of dimensionless vertical coordinates.
The definitions are associated with a coordinate variable via the standard_name and formula_terms attributes.
For backwards compatibility with COARDS use of these attributes is not required, but is strongly recommended.

Because identification of a coordinate type by its units is complicated by requiring the use of an external software
package [UDUNITS], we provide two optional methods that yield a direct identification. The attribute axis may be
attached to a coordinate variable and given one of the values X, Y, Z or T which stand for a longitude, latitude, vertical,
or time axis respectively. Alternatively the standard_name attribute may be used for direct identification. But note
that these optional attributes are in addition to the required COARDS metadata.

Coordinate types other than latitude, longitude, vertical, and time are allowed. To identify generic spatial coordinates
we recommend that the axis attribute be attached to these coordinates and given one of the values X, Y or Z. The
values X and Y for the axis attribute should be used to identify horizontal coordinate variables. If both X- and Y-axis
are identified, X-Y-up should define a right-handed coordinate system, i.e. rotation from the positive X direction to
the positive Y direction is anticlockwise if viewed from above. We strongly recommend that coordinate variables be
used for all coordinate types whenever they are applicable.

The methods of identifying coordinate types described in this section apply both to coordinate variables and to auxiliary
coordinate variables named by the coordinates attribute (see Chapter 5, Coordinate Systems).

4.1. Latitude Coordinate
Variables representing latitude must always explicitly include the units attribute; there is no default value. The
units attribute will be a string formatted as per the udunits.dat1 file. The recommended unit of latitude is
degrees_north. Also acceptable are degree_north, degree_N, degrees_N, degreeN, and degreesN.

Example 4.1. Latitude axis

float lat(lat) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 lat:standard_name = "latitude" ;

Application writers should note that the Udunits package does not recognize the directionality implied by the "north"
part of the unit specification. It only recognizes its size, i.e., 1 degree is defined to be pi/180 radians. Hence, determi-
nation that a coordinate is a latitude type should be done via a string match between the given unit and one of the
acceptable forms of degrees_north.

Optionally, the latitude type may be indicated additionally by providing the standard_name attribute with the value
latitude, and/or the axis attribute with the value Y.

Coordinates of latitude with respect to a rotated pole should be given units of degrees, not degrees_north or
equivalents, because applications which use the units to identify axes would have no means of distinguishing such an
axis from real latitude, and might draw incorrect coastlines, for instance.

1 http://www.unidata.ucar.edu/software/udunits/

http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/

Coordinate Types

16

4.2. Longitude Coordinate
Variables representing longitude must always explicitly include the units attribute; there is no default value. The
units attribute will be a string formatted as per the udunits.dat2 file. The recommended unit of longitude is
degrees_east. Also acceptable are degree_east, degree_E, degrees_E, degreeE, and degreesE.

Example 4.2. Longitude axis

float lon(lon) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 lon:standard_name = "longitude" ;

Application writers should note that the Udunits package has limited recognition of the directionality implied by
the "east" part of the unit specification. It defines degrees_east to be pi/180 radians, and hence equivalent to
degrees_north. We recommend the determination that a coordinate is a longitude type should be done via a string
match between the given unit and one of the acceptable forms of degrees_east.

Optionally, the longitude type may be indicated additionally by providing the standard_name attribute with the
value longitude, and/or the axis attribute with the value X.

Coordinates of longitude with respect to a rotated pole should be given units of degrees, not degrees_east or
equivalents, because applications which use the units to identify axes would have no means of distinguishing such an
axis from real longitude, and might draw incorrect coastlines, for instance.

4.3. Vertical (Height or Depth) Coordinate
Variables representing dimensional height or depth axes must always explicitly include the units attribute; there
is no default value.

The direction of positive (i.e., the direction in which the coordinate values are increasing), whether up or down, cannot
in all cases be inferred from the units. The direction of positive is useful for applications displaying the data. For this
reason the attribute positive as defined in the COARDS standard is required if the vertical axis units are not a valid
unit of pressure (a determination which can be made using the udunits routine, utScan) -- otherwise its inclusion is
optional. The positive attribute may have the value up or down (case insensitive). This attribute may be applied
to either coordinate variables or auxillary coordinate variables that contain vertical coordinate data.

For example, if an oceanographic netCDF file encodes the depth of the surface as 0 and the depth of 1000 meters as
1000 then the axis would use attributes as follows:

axis_name:units = "meters" ;
axis_name:positive = "down" ;

If, on the other hand, the depth of 1000 meters were represented as -1000 then the value of the positive attribute
would have been up. If the units attribute value is a valid pressure unit the default value of the positive attribute
is down.

A vertical coordinate will be identifiable by:

2 http://www.unidata.ucar.edu/software/udunits/

http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/

Coordinate Types

17

• units of pressure; or

• the presence of the positive attribute with a value of up or down (case insensitive).

Optionally, the vertical type may be indicated additionally by providing the standard_name attribute with an ap-
propriate value, and/or the axis attribute with the value Z.

4.3.1. Dimensional Vertical Coordinate
The units attribute for dimensional coordinates will be a string formatted as per the udunits.dat3 file. The
acceptable units for vertical (depth or height) coordinate variables are:

• units of pressure as listed in the file udunits.dat. For vertical axes the most commonly used of these include
include bar, millibar, decibar, atmosphere (atm), pascal (Pa), and hPa.

• units of length as listed in the file udunits.dat. For vertical axes the most commonly used of these include meter
(metre, m), and kilometer (km).

• other units listed in the file udunits.dat that may under certain circumstances reference vertical position such as units
of density or temperature.

Plural forms are also acceptable.

4.3.2. Dimensionless Vertical Coordinate
The units attribute is not required for dimensionless coordinates. For backwards compatibility with COARDS we
continue to allow the units attribute to take one of the values: level, layer, or sigma_level. These values
are not recognized by the Udunits package, and are considered a deprecated feature in the CF standard.

For dimensionless vertical coordinates we extend the COARDS standard by making use of the standard_name
attribute to associate a coordinate with its definition from Appendix D, Dimensionless Vertical Coordinates. The
definition provides a mapping between the dimensionless coordinate values and dimensional values that can positively
and uniquely indicate the location of the data. A new attribute, formula_terms, is used to associate terms in the
definitions with variables in a netCDF file. To maintain backwards compatibility with COARDS the use of these
attributes is not required, but is strongly recommended.

Example 4.3. Atmosphere sigma coordinate

float lev(lev) ;
 lev:long_name = "sigma at layer midpoints" ;
 lev:positive = "down" ;
 lev:standard_name = "atmosphere_sigma_coordinate" ;
 lev:formula_terms = "sigma: lev ps: PS ptop: PTOP" ;

In this example the standard_name value atmosphere_sigma_coordinate identifies the following defin-
ition from Appendix D, Dimensionless Vertical Coordinates which specifies how to compute pressure at gridpoint
(n,k,j,i) where j and i are horizontal indices, k is a vertical index, and n is a time index:

p(n,k,j,i) = ptop + sigma(k)*(ps(n,j,i)-ptop)

3 http://www.unidata.ucar.edu/software/udunits/

http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/

Coordinate Types

18

The formula_terms attribute associates the variable lev with the term sigma, the variable PS with the term ps,
and the variable PTOP with the term ptop. Thus the pressure at gridpoint (n,k,j,i) would be calculated by

p(n,k,j,i) = PTOP + lev(k)*(PS(n,j,i)-PTOP)

4.4. Time Coordinate
Variables representing time must always explicitly include the units attribute; there is no default value. The units
attribute takes a string value formatted as per the recommendations in the Udunits package [UDUNITS]. The following
excerpt from the Udunits documentation explains the time unit encoding by example:

 The specification:

 seconds since 1992-10-8 15:15:42.5 -6:00

indicates seconds since October 8th, 1992 at 3 hours, 15
minutes and 42.5 seconds in the afternoon in the time zone
which is six hours to the west of Coordinated Universal Time
(i.e. Mountain Daylight Time). The time zone specification
can also be written without a colon using one or two-digits
(indicating hours) or three or four digits (indicating hours
and minutes).

The acceptable units for time are listed in the udunits.dat4 file. The most commonly used of these strings (and
their abbreviations) includes day (d), hour (hr, h), minute (min) and second (sec, s). Plural forms
are also acceptable. The reference time string (appearing after the identifier since) may include date alone; date and
time; or date, time, and time zone. The reference time is required. A reference time in year 0 has a special meaning
(see Section 7.4, “Climatological Statistics”).

Note: if the time zone is omitted the default is UTC, and if both time and time zone are omitted the default is 00:00:00
UTC.

We recommend that the unit year be used with caution. The Udunits package defines a year to be exactly
365.242198781 days (the interval between 2 successive passages of the sun through vernal equinox). It is not a calen-
dar year. Udunits includes the following definitions for years: a common_year is 365 days, a leap_year is 366
days, a Julian_year is 365.25 days, and a Gregorian_year is 365.2425 days.

For similar reasons the unit month, which is defined in udunits.dat5 to be exactly year/12, should also be
used with caution.

Example 4.4. Time axis

double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1990-1-1 0:0:0" ;

4 http://www.unidata.ucar.edu/software/udunits/
5 http://www.unidata.ucar.edu/software/udunits/

http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/

Coordinate Types

19

A time coordinate is identifiable from its units string alone. The Udunits routines utScan() and utIsTime() can
be used to make this determination.

Optionally, the time coordinate may be indicated additionally by providing the standard_name attribute with an
appropriate value, and/or the axis attribute with the value T.

4.4.1. Calendar
In order to calculate a new date and time given a base date, base time and a time increment one must know what
calendar to use. For this purpose we recommend that the calendar be specified by the attribute calendar which is
assigned to the time coordinate variable. The values currently defined for calendar are:

gregorian or standard
Mixed Gregorian/Julian calendar as defined by Udunits. This is the default.

proleptic_gregorian
A Gregorian calendar extended to dates before 1582-10-15. That is, a year is a leap year if either (i) it is divisible
by 4 but not by 100 or (ii) it is divisible by 400.

noleap or 365_day
Gregorian calendar without leap years, i.e., all years are 365 days long.

all_leap or 366_day
Gregorian calendar with every year being a leap year, i.e., all years are 366 days long.

360_day
All years are 360 days divided into 30 day months.

julian
Julian calendar.

none
No calendar.

The calendar attribute may be set to none in climate experiments that simulate a fixed time of year. The time of
year is indicated by the date in the reference time of the units attribute. The time coordinate that might apply in a
perpetual July experiment are given in the following example.

Example 4.5. Perpetual time axis

variables:
 double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1-7-15 0:0:0" ;
 time:calendar = "none" ;
data:
 time = 0., 1., 2., ...;

Here, all days simulate the conditions of 15th July, so it does not make sense to give them different dates. The time
coordinates are interpreted as 0, 1, 2, etc. days since the start of the experiment.

If none of the calendars defined above applies (e.g., calendars appropriate to a different paleoclimate era), a non-stan-
dard calendar can be defined. The lengths of each month are explicitly defined with the month_lengths attribute
of the time axis:

Coordinate Types

20

month_lengths
A vector of size 12, specifying the number of days in the months from January to December (in a non-leap year).

If leap years are included, then two other attributes of the time axis should also be defined:

leap_year
An example of a leap year. It is assumed that all years that differ from this year by a multiple of four are also leap
years. If this attribute is absent, it is assumed there are no leap years.

leap_month
A value in the range 1-12, specifying which month is lengthened by a day in leap years (1=January). If this attribute
is not present, February (2) is assumed. This attribute is ignored if leap_year is not specified.

The calendar attribute is not required when a non-standard calendar is being used. It is sufficient to define the cal-
endar using the month_lengths attribute, along with leap_year, and leap_month as appropriate. However,
the calendar attribute is allowed to take non-standard values and in that case defining the non-standard calendar
using the appropriate attributes is required.

Example 4.6. Paleoclimate time axis

double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1-1-1 0:0:0" ;
 time:calendar = "126 kyr B.P." ;
 time:month_lengths = 34, 31, 32, 30, 29, 27, 28, 28, 28, 32, 32, 34 ;

The mixed Gregorian/Julian calendar used by Udunits is explained in the following excerpt from the udunits(3) man
page:

The udunits(3) package uses a mixed Gregorian/Julian calen-
dar system. Dates prior to 1582-10-15 are assumed to use
the Julian calendar, which was introduced by Julius Caesar
in 46 BCE and is based on a year that is exactly 365.25 days
long. Dates on and after 1582-10-15 are assumed to use the
Gregorian calendar, which was introduced on that date and is
based on a year that is exactly 365.2425 days long. (A year
is actually approximately 365.242198781 days long.) Seem-
ingly strange behavior of the udunits(3) package can result
if a user-given time interval includes the changeover date.
For example, utCalendar() and utInvCalendar() can be used to
show that 1582-10-15 *preceded* 1582-10-14 by 9 days.

Due to problems caused by the discontinuity in the default mixed Gregorian/Julian calendar, we strongly recommend
that this calendar should only be used when the time coordinate does not cross the discontinuity. For time coordinates
that do cross the discontinuity the proleptic_gregorian calendar should be used instead.

21

Chapter 5. Coordinate Systems
A variable's spatiotemporal dimensions are used to locate data values in time and space. This is accomplished by
associating these dimensions with the relevant set of latitude, longitude, vertical, and time coordinates. This section
presents two methods for making that association: the use of coordinate variables, and the use of auxiliary coordinate
variables.

All of a variable's dimensions that are latitude, longitude, vertical, or time dimensions (see Section 1.2, “Terminology”)
must have corresponding coordinate variables, i.e., one-dimensional variables with the same name as the dimension
(see examples in Chapter 4, Coordinate Types). This is the only method of associating dimensions with coordinates
that is supported by [COARDS].

All of a variable's spatiotemporal dimensions that are not latitude, longitude, vertical, or time dimensions are required
to be associated with the relevant latitude, longitude, vertical, or time coordinates via the new coordinates attribute
of the variable. The value of the coordinates attribute is a blank separated list of the names of auxiliary coordinate
variables. There is no restriction on the order in which the auxiliary coordinate variables appear in the coordinates
attribute string. The dimensions of an auxiliary coordinate variable must be a subset of the dimensions of the variable
with which the coordinate is associated (an exception is label coordinates (Section 6.1, “Labels”) which contain a
dimension for maximum string length). We recommend that the name of a multidimensional coordinate variable should
not match the name of any of its dimensions because that precludes supplying a coordinate variable for the dimension.
This practice also avoids potential bugs in applications that determine coordinate variables by only checking for a
name match between a dimension and a variable and not checking that the variable is one dimensional.

The use of coordinate variables is required whenever they are applicable. That is, auxiliary coordinate variables may
not be used as the only way to identify latitude and longitude coordinates that could be identified using coordinate
variables. This is both to enhance conformance to COARDS and to facilitate the use of generic applications that rec-
ognize the NUG convention for coordinate variables. An application that is trying to find the latitude coordinate of a
variable should always look first to see if any of the variable's dimensions correspond to a latitude coordinate variable.
If the latitude coordinate is not found this way, then the auxiliary coordinate variables listed by the coordinates
attribute should be checked. Note that it is permissible, but optional, to list coordinate variables as well as auxiliary
coordinate variables in the coordinates attribute. The axis attribute is not allowed for auxiliary coordinate vari-
ables. Auxiliary coordinate variables which lie on the horizontal surface can be identified as such by their dimensions
being horizontal. Horizontal dimensions are those whose coordinate variables have an axis attribute of X or Y, or a
units attribute indicating latitude and longitude (see Chapter 4, Coordinate Types).

If the coordinate variables for a horizontal grid are not longitude and latitude, it is recommended that they be supplied
in addition to the required coordinates. For example, the Cartesian coordinates of a map projection should be supplied
as coordinate variables in addition to the required two-dimensional latitude and longitude variables that are identified
via the coordinates attribute. The use of the axis attribute with values X and Y is recommended for the coordinate
variables(see Chapter 4, Coordinate Types).

It is sometimes not practical to specify the latitude-longitude location of data which is representative of geographic
regions with complex boundaries. For this purpose, provision is made in Section 6.1.1, “Geographic Regions” for
indicating the region by a standardized name.

5.1. Independent Latitude, Longitude, Vertical,
and Time Axes
When each of a variable's spatiotemporal dimensions is a latitude, longitude, vertical, or time dimension, then each
axis is identified by a coordinate variable.

Coordinate Systems

22

Example 5.1. Independent coordinate variables

dimensions:
 lat = 18 ;
 lon = 36 ;
 pres = 15 ;
 time = 4 ;
variables:
 float xwind(time,pres,lat,lon) ;
 xwind:long_name = "zonal wind" ;
 xwind:units = "m/s" ;
 float lon(lon) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 float lat(lat) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 float pres(pres) ;
 pres:long_name = "pressure" ;
 pres:units = "hPa" ;
 double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1990-1-1 0:0:0" ;

xwind(n,k,j,i) is associated with the coordinate values lon(i), lat(j), pres(k), and time(n).

5.2. Two-Dimensional Latitude, Longitude, Co-
ordinate Variables
The latitude and longitude coordinates of a horizontal grid that was not defined as a Cartesian product of latitude
and longitude axes, can sometimes be represented using two-dimensional coordinate variables. These variables are
identified as coordinates by use of the coordinates attribute.

Example 5.2. Two-dimensional coordinate variables

dimensions:
 xc = 128 ;
 yc = 64 ;
 lev = 18 ;
variables:
 float T(lev,yc,xc) ;
 T:long_name = "temperature" ;
 T:units = "K" ;
 T:coordinates = "lon lat" ;
 float xc(xc) ;
 xc:axis = "X" ;
 xc:long_name = "x-coordinate in Cartesian system" ;
 xc:units = "m" ;
 float yc(yc) ;
 yc:axis = "Y" ;

Coordinate Systems

23

 yc:long_name = "y-coordinate in Cartesian system" ;
 yc:units = "m" ;
 float lev(lev) ;
 lev:long_name = "pressure level" ;
 lev:units = "hPa" ;
 float lon(yc,xc) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 float lat(yc,xc) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;

T(k,j,i) is associated with the coordinate values lon(j,i), lat(j,i), and lev(k). The vertical coordinate
is represented by the coordinate variable lev(lev) and the latitude and longitude coordinates are represented by the
auxiliary coordinate variables lat(yc,xc) and lon(yc,xc) which are identified by the coordinates attribute.

Note that coordinate variables are also defined for the xc and yc dimensions. This faciliates processing of this data
by generic applications that don't recognize the multidimensional latitude and longitude coordinates.

5.3. Reduced Horizontal Grid
A "reduced" longitude-latitude grid is one in which the points are arranged along constant latitude lines with the number
of points on a latitude line decreasing toward the poles. Storing this type of gridded data in two-dimensional arrays
wastes space, and results in the presence of missing values in the 2D coordinate variables. We recommend that this
type of gridded data be stored using the compression scheme described in Section 8.2, “Compression by Gathering”.
Compression by gathering preserves structure by storing a set of indices that allows an application to easily scatter the
compressed data back to two-dimensional arrays. The compressed latitude and longitude auxiliary coordinate variables
are identified by the coordinates attribute.

Example 5.3. Reduced horizontal grid

dimensions:
 londim = 128 ;
 latdim = 64 ;
 rgrid = 6144 ;
variables:
 float PS(rgrid) ;
 PS:long_name = "surface pressure" ;
 PS:units = "Pa" ;
 PS:coordinates = "lon lat" ;
 float lon(rgrid) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 float lat(rgrid) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 int rgrid(rgrid);
 rgrid:compress = "latdim londim";

PS(n) is associated with the coordinate values lon(n), lat(n). Compressed grid index (n) would be assigned
to 2D index (j,i) (C index conventions) where

Coordinate Systems

24

j = rgrid(n) / 128
i = rgrid(n) - 128*j

Notice that even if an application does not recognize the compress attribute, the grids stored in this format can still
be handled, by an application that recognizes the coordinates attribute.

5.4. Timeseries of Station Data
To represent data at scattered points it is convenient to use a variable with one dimension to represent the measurement
locations. Auxiliary coordinate variables are used to associate a single spatial dimension with multiple independent
coordinates.

Example 5.4. Timeseries of station data

dimensions:
 station = 10 ; // measurement locations
 pressure = 11 ; // pressure levels
 time = UNLIMITED ;
variables:
 float humidity(time,pressure,station) ;
 humidity:long_name = "specific humidity" ;
 humidity:coordinates = "lat lon" ;
 double time(time) ;
 time:long_name = "time of measurement" ;
 time:units = "days since 1970-01-01 00:00:00" ;
 float lon(station) ;
 lon:long_name = "station longitude";
 lon:units = "degrees_east";
 float lat(station) ;
 lat:long_name = "station latitude" ;
 lat:units = "degrees_north" ;
 float pressure(pressure) ;
 pressure:long_name = "pressure" ;
 pressure:units = "hPa" ;

humidity(n,k,i) is associated with the coordinate values time(n), pressure(k), lat(i), and lon(i).

5.5. Trajectories
A possible representation of the spatiotemporal locations of measurements along a flight path is to use time to para-
meterize the trajectory and use auxiliary coordinate variables to provide the spatial locations.

Example 5.5. Trajectories

dimensions:
 time = 1000 ;
variables:
 float O3(time) ;

Coordinate Systems

25

 O3:long_name = "ozone concentration" ;
 O3:units = "1e-9" ;
 O3:coordinates = "lon lat z" ;
 double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1970-01-01 00:00:00" ;
 float lon(time) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 float lat(time) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 float z(time) ;
 z:long_name = "height above mean sea level" ;
 z:units = "km" ;
 z:positive = "up" ;

O3(n) is associated with the coordinate values time(n), z(n), lat(n), and lon(n).

5.6. Grid Mappings and ProjectionsHorizon-
tal Coordinate Reference Systems, Grid Map-
pings, and Projections
When the coordinate variables for a horizontal grid are not longitude and latitude, it is required that the true latitude and
longitude coordinates be supplied via the coordinates attribute. If in addition it is desired to describe the mapping
between the given coordinate variables and the true latitude and longitude coordinates, the attribute grid_mapping
may be used to supply this description. This attribute is attached to data variables so that variables with different
mappings may be present in a single file. The attribute takes a string value which is the name of another variable in the
file that provides the description of the mapping via a collection of attached attributes. This variable is called a grid
mapping variable and is of arbitrary type since it contains no data. Its purpose is to act as a container for the attributes
that define the mapping. The one attribute that all grid mapping variables must have is grid_mapping_name which
takes a string value that contains the mapping's name. The other attributes that define a specific mapping depend on the
value of grid_mapping_name. The valid values of grid_mapping_name along with the attributes that provide
specific map parameter values are described in Appendix F, Grid Mappings.

When the coordinate variables for a horizontal grid are longitude and latitude, a grid mapping variable with
grid_mapping_name of latitude_longitude may be used to specify the ellipsoid and prime meridian.

In order to make use of a grid mapping to directly calculate latitude and longitude values it is necessary to associate the
coordinate variables with the independent variables of the mapping. This is done by assigning a standard_name to
the coordinate variable. The appropriate values of the standard_name depend on the grid mapping and are given
in Appendix F, Grid Mappings.

Example 5.6. Rotated pole grid

dimensions:
 rlon = 128 ;
 rlat = 64 ;
 lev = 18 ;
variables:

Coordinate Systems

26

 float T(lev,rlat,rlon) ;
 T:long_name = "temperature" ;
 T:units = "K" ;
 T:coordinates = "lon lat" ;
 T:grid_mapping = "rotated_pole" ;
 char rotated_pole
 rotated_pole:grid_mapping_name = "rotated_latitude_longitude" ;
 rotated_pole:grid_north_pole_latitude = 32.5 ;
 rotated_pole:grid_north_pole_longitude = 170. ;
 float rlon(rlon) ;
 rlon:long_name = "longitude in rotated pole grid" ;
 rlon:units = "degrees" ;
 rlon:standard_name = "grid_longitude";
 float rlat(rlat) ;
 rlat:long_name = "latitude in rotated pole grid" ;
 rlat:units = "degrees" ;
 rlon:standard_name = "grid_latitude";
 float lev(lev) ;
 lev:long_name = "pressure level" ;
 lev:units = "hPa" ;
 float lon(rlat,rlon) ;
 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 float lat(rlat,rlon) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;

A CF compliant application can determine that rlon and rlat are longitude and latitude values in the rotated grid by rec-
ognizing the standard names grid_longitude and grid_latitude. Note that the units of the rotated longitude
and latitude axes are given as degrees. This should prevent a COARDS compliant application from mistaking the
variables rlon and rlat to be actual longitude and latitude coordinates. The entries for these names in the standard
name table indicate the appropriate sign conventions for the units of degrees.

Example 5.7. Lambert conformal projection

dimensions:
 y = 228;
 x = 306;
 time = 41;

variables:
 int Lambert_Conformal;
 Lambert_Conformal:grid_mapping_name = "lambert_conformal_conic";
 Lambert_Conformal:standard_parallel = 25.0;
 Lambert_Conformal:longitude_of_central_meridian = 265.0;
 Lambert_Conformal:latitude_of_projection_origin = 25.0;
 double y(y);
 y:units = "km";
 y:long_name = "y coordinate of projection";
 y:standard_name = "projection_y_coordinate";
 double x(x);
 x:units = "km";

Coordinate Systems

27

 x:long_name = "x coordinate of projection";
 x:standard_name = "projection_x_coordinate";
 double lat(y, x);
 lat:units = "degrees_north";
 lat:long_name = "latitude coordinate";
 lat:standard_name = "latitude";
 double lon(y, x);
 lon:units = "degrees_east";
 lon:long_name = "longitude coordinate";
 lon:standard_name = "longitude";
 int time(time);
 time:long_name = "forecast time";
 time:units = "hours since 2004-06-23T22:00:00Z";
 float Temperature(time, y, x);
 Temperature:units = "K";
 Temperature:long_name = "Temperature @ surface";
 Temperature:missing_value = 9999.0;
 Temperature:coordinates = "lat lon";
 Temperature:grid_mapping = "Lambert_Conformal";

An application can determine that x and y are the projection coordinates by recognizing the standard
names projection_x_coordinate and projection_y_coordinate. The grid mapping variable
Lambert_Conformal contains the mapping parameters as attributes, and is associated with the Temperature
variable via its grid_mapping attribute.

Example 5.8. Latitude and longitude on a spherical Earth

dimensions:
 lat = 18 ;
 lon = 36 ;
variables:
 double lat(lat) ;
 double lon(lon) ;
 float temp(lat, lon) ;
 temp:long_name = "temperature" ;
 temp:units = "K" ;
 temp:grid_mapping = "crs" ;
 int crs ;
 crs:grid_mapping_name = "latitude_longitude"
 crs:semi_major_axis = 6371000.0 ;
 crs:inverse_flattening = 0 ;

Example 5.9. Latitude and longitude on the WGS 1984 datum

dimensions:
 lat = 18 ;
 lon = 36 ;
variables:
 double lat(lat) ;
 double lon(lon) ;

Coordinate Systems

28

 float temp(lat, lon) ;
 temp:long_name = "temperature" ;
 temp:units = "K" ;
 temp:grid_mapping = "crs" ;
 int crs ;
 crs:grid_mapping_name = "latitude_longitude";
 crs:longitude_of_prime_meridian = 0.0 ;
 crs:semi_major_axis = 6378137.0 ;
 crs:inverse_flattening = 298.257223563 ;

Example 5.10. British National Grid

dimensions:
 lat = 648 ;
 lon = 648 ;
 y = 18 ;
 x = 36 ;
variables:
 double x(x) ;
 x:standard_name = "projection_x_coordinate" ;
 x:units = "m" ;
 double y(y) ;
 y:standard_name = "projection_y_coordinate" ;
 y:units = "m" ;
 double lat(y, x) ;
 double lon(y, x) ;
 float temp(y, x) ;
 temp:long_name = "temperature" ;
 temp:units = "K" ;
 temp:coordinates = "lat lon" ;
 temp:grid_mapping = "crs" ;
 int crs ;
 crs:grid_mapping_name = "transverse_mercator";
 crs:semi_major_axis = 6377563.396 ;
 crs:semi_minor_axis = 6356256.910 ;
 crs:inverse_flattening = 299.3249646 ;
 crs:latitude_of_projection_origin = 49.0 ;
 crs:longitude_of_projection_origin = -2.0 ;
 crs:false_easting = 400000.0 ;
 crs:false_northing = -100000.0 ;
 crs:scale_factor_at_projection_origin = 0.9996012717 ;

5.7. Scalar Coordinate Variables
When a variable has an associated coordinate which is single-valued, that coordinate may be represented as a scalar
variable. Since there is no associated dimension these scalar coordinate variables should be attached to a data variable
via the coordinates attribute.

Under COARDS the method of providing a single valued coordinate was to add a dimension of size one to the variable,
and supply the corresponding coordinate variable. The new scalar coordinate variable is a convenience feature which

Coordinate Systems

29

avoids adding size one dimensions to variables. Scalar coordinate variables have the same information content and can
be used in the same contexts as a size one coordinate variable. Note however that use of this feature with a latitude,
longitude, vertical, or time coordinate will inhibit COARDS conforming applications from recognizing them.

Once a name is used for a scalar coordinate variable it can not be used for a 1D coordinate variable. For this reason
we strongly recommend against using a name for a scalar coordinate variable that matches the name of any dimension
in the file.

Example 5.11. Multiple forecasts from a single analysis

dimensions:
 lat = 180 ;
 lon = 360 ;
 time = UNLIMITED ;
variables:
 double atime
 atime:standard_name = "forecast_reference_time" ;
 atime:units = "hours since 1999-01-01 00:00" ;
 double time(time);
 time:standard_name = "time" ;
 time:units = "hours since 1999-01-01 00:00" ;
 double lon(lon) ;
 lon:long_name = "station longitude";
 lon:units = "degrees_east";
 double lat(lat) ;
 lat:long_name = "station latitude" ;
 lat:units = "degrees_north" ;
 double p500
 p500:long_name = "pressure" ;
 p500:units = "hPa" ;
 p500:positive = "down" ;
 float height(time,lat,lon);
 height:long_name = "geopotential height" ;
 height:standard_name = "geopotential_height" ;
 height:units = "m" ;
 height:coordinates = "atime p500" ;
data:
 time = 6., 12., 18., 24. ;
 atime = 0. ;
 p500 = 500. ;

In this example both the analysis time and the single pressure level are represented using scalar coordinate variables.
The analysis time is identified by the standard name "forecast_reference_time" while the valid time of the forecast is
identified by the standard name "time".

30

Chapter 6. Labels and Alternative
Coordinates
6.1. Labels
The previous section contained several examples in which measurements from scattered sites were grouped using a
single dimension. Coordinates of the site locations can be provided using auxiliary coordinate variables, but it is often
desirable to identify measurement sites by name, or some other unique string.

The list of string identifiers plays an analogous role to a coordinate variable, hence we have chosen to use the co-
ordinates attribute to provide the name of the variable that contains the string array. An application processing
the variables listed in the coordinates attribute can recognize a labeled axis by checking whether or not a given
variable contains character data.

Example 6.1. Several parcel trajectories

Consider a set of ocean floats that follow parcel trajectories and simultaneously measure temperature at fixed times.
We wish to identify the floats by name. The temperature data is a function of parcel (i.e., float) and time. The
location of each sample is also a function of parcel and time, so the position information is stored in a multidimensional
coordinate variable.

dimensions:
 parcel = 15 ; // number of trajectories
 times = 20 ;
 max_len_parcel_name = 64 ; // max length of trajectory name
variables:
 float temperature(parcel,times) ;
 temperature:coordinates = "parcel_name lat lon" ;
 float times(times) ;
 char parcel_name(parcel,max_len_parcel_name) ;
 float lon(parcel,times) ;
 float lat(parcel,times) ;

6.1.1. Geographic Regions
When data is representative of geographic regions which can be identified by names but which have complex bound-
aries that cannot practically be specified using longitude and latitude boundary coordinates, a labeled axis should be
used to identify the regions. We recommend that the names be chosen from the list of standardized region names1

whenever possible. To indicate that the label values are standardized the variable that contains the labels must be given
the standard_name attribute with the value region.

Example 6.2. Northward heat transport in Atlantic Ocean

Suppose we have data representing northward heat transport across a set of zonal slices in the Atlantic Ocean. Note
that the standard names to describe this quantity do not include location information. That is provided by the latitude
coordinate and the labeled axis:

1 http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standardized-region-names

http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standardized-region-names
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standardized-region-names

Labels and Alternative Coordinates

31

dimensions:
 times = 20 ;
 lat = 5
 lbl = 1 ;
 strlen = 64 ;
variables:
 float n_heat_transport(time,lat,lbl);
 n_heat_transport:units="W";
 n_heat_transport:coordinates="geo_region";
 n_heat_transport:standard_name="northward_ocean_heat_transport";
 double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1990-1-1 0:0:0" ;
 float lat(lat) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 char geo_region(lbl,strlen) ;
 geo_region:standard_name="region"
data:
 geo_region = "atlantic_ocean" ;
 lat = 10., 20., 30., 40., 50. ;

6.2. Alternative Coordinates
In some situations a dimension may have alternative sets of coordinates values. Since there can only be one coordinate
variable for the dimension (the variable with the same name as the dimension), any alternative sets of values have to be
stored in auxiliary coordinate variables. For such alternative coordinate variables, there are no mandatory attributes,
but they may have any of the attributes allowed for coordinate variables.

Example 6.3. Model level numbers

Levels on a vertical axis may be described by both the physical coordinate and the ordinal model level number.

float xwind(sigma,lat);
 xwind:coordinates="model_level";
float sigma(sigma); // physical height coordinate
 sigma:long_name="sigma";
 sigma:positive="down";
int model_level(sigma); // model level number at each height
 model_level:long_name="model level number";
 model_level:positive="up";

32

Chapter 7. Data Representative of
Cells
When gridded data does not represent the point values of a field but instead represents some characteristic of the
field within cells of finite "volume," a complete description of the variable should include metadata that describes
the domain or extent of each cell, and the characteristic of the field that the cell values represent. It is possible for a
single data value to be the result of an operation whose domain is a disjoint set of cells. This is true for many types
of climatological averages, for example, the mean January temperature for the years 1970-2000. The methods that we
present below for describing cells only provides an association of a grid point with a single cell, not with a collection
of cells. However, climatological statistics are of such importance that we provide special methods for describing their
associated computational domains in Section 7.4, “Climatological Statistics”.

7.1. Cell Boundaries
To represent cells we add the attribute bounds to the appropriate coordinate variable(s). The value of bounds is the
name of the variable that contains the vertices of the cell boundaries. We refer to this type of variable as a "boundary
variable." A boundary variable will have one more dimension than its associated coordinate or auxiliary coordinate
variable. The additional dimension should be the most rapidly varying one, and its size is the maximum number of
cell vertices. Since a boundary variable is considered to be part of a coordinate variable's metadata, it is not necessary
to provide it with attributes such as long_name and units.

Note that the boundary variable for a set of N contiguous intervals is an array of shape (N,2). Although in this case there
will be a duplication of the boundary coordinates between adjacent intervals, this representation has the advantage that
it is general enough to handle, without modification, non-contiguous intervals, as well as intervals on an axis using
the unlimited dimension.

Applications that process cell boundary data often times need to determine whether or not adjacent cells share an edge.
In order to facilitate this type of processing the following restrictions are placed on the data in boundary variables.

Bounds for 1-D coordinate variables
For a coordinate variable such as lat(lat) with associated boundary variable latbnd(x,2), the interval
endpoints must be ordered consistently with the associated coordinate, e.g., for an increasing coordinate, lat(1)
> lat(0) implies latbnd(i,1) >= latbnd(i,0) for all i

If adjacent intervals are contiguous, the shared endpoint must be represented indentically in each instance where
it occurs in the boundary variable. For example, if the intervals that contain grid points lat(i) and lat(i+1)
are contiguous, then latbnd(i+1,0) = latbnd(i,1).

Bounds for 2-D coordinate variables with 4-sided cells
In the case where the horizontal grid is described by two-dimensional auxiliary coordinate variables in latitude
lat(n,m) and longitude lon(n,m), and the associated cells are four-sided, then the boundary variables are
given in the form latbnd(n,m,4) and lonbnd(n,m,4), where the trailing index runs over the four vertices
of the cells. Let us call the side of cell (j,i) facing cell (j,i-1) the "i-1" side, the side facing cell (j,i
+1) the "i+1" side, and similarly for "j-1" and "j+1". Then we can refer to the vertex formed by sides i-1 and
j-1 as (j-1,i-1). With this notation, the four vertices are indexed as follows: 0=(j-1,i-1), 1=(j-1,i
+1), 2=(j+1,i+1), 3=(j+1,i-1).

If i-j-upward is a right-handed coordinate system (like lon-lat-upward), this ordering means the vertices will be
traversed anticlockwise on the lon-lat surface seen from above. If i-j-upward is left-handed, they will be traversed
clockwise on the lon-lat surface.

The bounds can be used to decide whether cells are contiguous via the following relationships. In these equations
the variable bnd is used generically to represent either the latitude or longitude boundary variable.

Data Representative of Cells

33

For 0 < j < n and 0 < i < m,
 If cells (j,i) and (j,i+1) are contiguous, then
 bnd(j,i,1)=bnd(j,i+1,0)
 bnd(j,i,2)=bnd(j,i+1,3)
 If cells (j,i) and (j+1,i) are contiguous, then
 bnd(j,i,3)=bnd(j+1,i,0) and bnd(j,i,2)=bnd(j+1,i,1)

Bounds for multi-dimensional coordinate variables with p-sided cells
In all other cases, the bounds should be dimensioned (...,n,p), where (...,n) are the dimensions of the
auxiliary coordinate variables, and p the number of vertices of the cells. The vertices must be traversed anticlock-
wise in the lon-lat plane as viewed from above. The starting vertex is not specified.

Example 7.1. Cells on a latitude axis

dimensions:
 lat = 64;
 nv = 2; // number of vertices
variables:
 float lat(lat);
 lat:long_name = "latitude";
 lat:units = "degrees_north";
 lat:bounds = "lat_bnds";
 float lat_bnds(lat,nv);

The boundary variable lat_bnds associates a latitude gridpoint i with the interval whose boundaries are
lat_bnds(i,0) and lat_bnds(i,1). The gridpoint location, lat(i), should be contained within this interval.

For rectangular grids, two-dimensional cells can be expressed as Cartesian products of one-dimensional cells of the
type in the preceding example. However for non-rectangular grids a "rectangular" cell will in general require specifying
all four vertices for each cell.

Example 7.2. Cells in a non-rectangular grid

dimensions:
 imax = 128;
 jmax = 64;
 nv = 4;
variables:
 float lat(jmax,imax);
 lat:long_name = "latitude";
 lat:units = "degrees_north";
 lat:bounds = "lat_bnds";
 float lon(jmax,imax);
 lon:long_name = "longitude";
 lon:units = "degrees_east";
 lon:bounds = "lon_bnds";
 float lat_bnds(jmax,imax,nv);
 float lon_bnds(jmax,imax,nv);

Data Representative of Cells

34

The boundary variables lat_bnds and lon_bnds associate a gridpoint (j,i) with the cell deter-
mined by the vertices (lat_bnds(j,i,n),lon_bnds(j,i,n)), n=0,..,3. The gridpoint location,
(lat(j,i),lon(j,i)), should be contained within this region.

7.2. Cell Measures
For some calculations, information is needed about the size, shape or location of the cells that cannot be deduced
from the coordinates and bounds without special knowledge that a generic application cannot be expected to have. For
instance, in computing the mean of several cell values, it is often appropriate to "weight" the values by area. When
computing an area-mean each grid cell value is multiplied by the grid-cell area before summing, and then the sum is
divided by the sum of the grid-cell areas. Area weights may also be needed to map data from one grid to another in
such a way as to preserve the area mean of the field. The preservation of area-mean values while regridding may be
essential, for example, when calculating surface heat fluxes in an atmospheric model with a grid that differs from the
ocean model grid to which it is coupled.

In many cases the areas can be calculated from the cell bounds, but there are exceptions. Consider, for example, a
spherical geodesic grid composed of contiguous, roughly hexagonal cells. The vertices of the cells can be stored in the
variable identified by the bounds attribute, but the cell perimeter is not uniquely defined by its vertices (because
the vertices could, for example, be connected by straight lines, or, on a sphere, by lines following a great circle, or,
in general, in some other way). Thus, given the cell vertices alone, it is generally impossible to calculate the area of a
grid cell. This is why it may be necessary to store the grid-cell areas in addition to the cell vertices.

In other cases, the grid cell-volume might be needed and might not be easily calculated from the coordinate information.
In ocean models, for example, it is not uncommon to find "partial" grid cells at the bottom of the ocean. In this case,
rather than (or in addition to) indicating grid cell area, it may be necessary to indicate volume.

To indicate extra information about the spatial properties of a variable's grid cells, a cell_measures attribute may
be defined for a variable. This is a string attribute comprising a list of blank-separated pairs of words of the form
"measure: name". For the moment, "area" and "volume" are the only defined measures, but others may be
supported in future. The "name" is the name of the variable containing the measure values, which we refer to as a
"measure variable". The dimensions of the measure variable should be the same as or a subset of the dimensions of the
variable to which they are related, but their order is not restricted. In the case of area, for example, the field itself might
be a function of longitude, latitude, and time, but the variable containing the area values would only include longitude
and latitude dimensions (and the dimension order could be reversed, although this is not recommended). The variable
must have a units attribute and may have other attributes such as a standard_name.

For rectangular longitude-latitude grids, the area of grid cells can be calculated from the bounds: the area of a cell
is proportional to the product of the difference in the longitude bounds of the cell and the difference between the
sine of each latitude bound of the cell. In this case supplying grid-cell areas via the cell_measures attribute is
unnecessary because it may be assumed that applications can perform this calculation, using their own value for the
radius of the Earth.

Example 7.3. Cell areas for a spherical geodesic grid

dimensions:
 cell = 2562 ; // number of grid cells
 time = 12 ;
 nv = 6 ; // maximum number of cell vertices
variables:
 float PS(time,cell) ;
 PS:units = "Pa" ;
 PS:coordinates = "lon lat" ;
 PS:cell_measures = "area: cell_area" ;
 float lon(cell) ;

Data Representative of Cells

35

 lon:long_name = "longitude" ;
 lon:units = "degrees_east" ;
 lon:bounds="lon_vertices" ;
 float lat(cell) ;
 lat:long_name = "latitude" ;
 lat:units = "degrees_north" ;
 lat:bounds="lat_vertices" ;
 float time(time) ;
 time:long_name = "time" ;
 time:units = "days since 1979-01-01 0:0:0" ;
 float cell_area(cell) ;
 cell_area:long_name = "area of grid cell" ;
 cell_area:standard_name="area";
 cell_area:units = "m2"
 float lon_vertices(cell,nv) ;
 float lat_vertices(cell,nv) ;

7.3. Cell Methods
To describe the characteristic of a field that is represented by cell values we define the cell_methods attribute
of the variable. This is a string attribute comprising a list of blank-separated words of the form "name: method".
Each "name: method" pair indicates that for the axis identified by name, the cell values representing the field have
been determined or derived by the specified method. The token name can be a dimension of the variable, a scalar
coordinate variable, or a valid standard name. The values of method should be selected from the list in Appendix E,
Cell Methods, which includes point, sum, mean, maximum, minimum, mid_range, standard_deviation,
variance, mode, and median. Case is not significant in the method name. Some methods (e.g., variance) imply
a change of units of the variable, and this also is specified by Appendix D, Dimensionless Vertical Coordinates. It
must be remembered that the method applies only to the axis indicated, and different methods may apply to other axes.
If a precipitation value in a longitude-latitude cell is given the method maximum for these axes, for instance, it means
that it is the maximum within these spatial cells, and does not imply that it is also the maximum in time.

The default interpretation for variables that have cells associated with their grid points, but do not have the
cell_methods attribute specified, depends on whether the quantity is extensive (which depends on the size of the
cell) or intensive (which doesn't). So, for example, suppose the quantities "accumulated precipitation" and "precipi-
tation rate" each have a time axis and that time intervals are associated with each point on the time axis via a bound-
ary variable. A variable representing accumulated precipitation is extensive in time and requires a time interval to be
completely specified. Hence its default interpretation should be that the cell associated with the grid point represents
the time interval over which the precipitation was accumulated. This is indicated explicitly by setting the cell method
to sum. A precipitation rate on the other hand is intensive in time and could equally well represent an instantaneous
value or a mean value over the time interval specified by the cell. However, if the mean method is not specified then
the default interpretation for the quantity would be instantaneous. The default method is indicated explicity by setting
the cell method to point.

Example 7.4. Methods applied to a timeseries

Consider 12-hourly timeseries of pressure, temperature and precipitation from a number of stations, where pressure
is measured instantaneously, maximum temperature for the preceding 12 hours is recorded, and precipitation is accu-
mulated in a rain gauge. For a period of 48 hours from 6 a.m. on 19 April 1998, the data is structured as follows:

dimensions:
 time = UNLIMITED; // (5 currently)
 station = 10;

Data Representative of Cells

36

 nv = 2;
variables:
 float pressure(station,time);
 pressure:long_name = "pressure";
 pressure:units = "kPa";
 float maxtemp(station,time);
 maxtemp:long_name = "temperature";
 maxtemp:units = "K";
 maxtemp:cell_methods = "time: maximum";
 float ppn(station,time);
 ppn:long_name = "depth of water-equivalent precipitation";
 ppn:units = "mm";
 double time(time);
 time:long_name = "time";
 time:units = "h since 1998-4-19 6:0:0";
 time:bounds = "time_bnds";
 double time_bnds(time,nv);
data:
 time = 0., 12., 24., 36., 48.;
 time_bnds = -12.,0., 0.,12., 12.,24., 24.,36., 36.,48.;

Note that in this example the time axis values coincide with the end of each interval. It is sometimes desirable, however,
to use the midpoint of intervals as coordinate values for variables that are representative of an interval. An application
may simply obtain the midpoint values by making use of the boundary data in time_bnds.

If more than one cell method is to be indicated, they should be arranged in the order they were applied. The left-
most operation is assumed to have been applied first. Suppose a quantity varies in both longitude and time (dimen-
sions lon and time) within each gridbox. Values that represent the time-average of the zonal maximum are labelled
cell_methods="lon: maximum time: mean", i.e. find the largest value at each instant of time over
all longitudes, then average these maxima over time; values of the zonal maximum of time-averages are labelled
cell_methods="time: mean lon: maximum". If the methods could have been applied in any order without
affecting the outcome, they may be put in any order in the cell_methods attribute.

If a data value is representative of variation over a combination of axes, a single method should be prefixed by the names
of all the dimensions involved, whose order is immaterial. Dimensions should be grouped in this way only if there
is an essential difference from treating them individually. For instance, the standard deviation of topographic height
within a longitude-latitude gridbox would have cell_methods="lat: lon: standard_deviation". This
is not the same as cell_methods="lon: standard_deviation lat: standard_deviation", which
would mean finding the standard deviation along each parallel of latitude within the zonal extent of the gridbox, and
then the standard deviation of these values over latitude.

To indicate more precisely how the cell method was applied, extra information may be included in parentheses () after
the identification of the method. This information includes standardized and non-standarized parts. Currently the only
stardardized information is to provide the typical interval between the original data values to which the method was
applied, in the situation where the present data values are statistically representative of original data values which
had a finer spacing. The syntax is (interval: value unit), where value is a numerical value and unit
is a string that can be recognized by UNIDATA's Udunits package [UDUNITS]. The unit does not have to be
dimensionally equivalent to the unit of the corresponding dimension name, although it often will be. Recording the
original interval is particularly important for standard deviations. For example, the standard deviation of daily values
could be indicated by cell_methods="time: standard_deviation (interval: 1 day)" and of
annual values cell_methods="time: standard_deviation (interval: 1 year)".

If the cell method applies to a combination of axes, they may have a common original interval e.g.
cell_methods="lat: lon: standard_deviation (interval: 10 km)". Alternatively, they may

Data Representative of Cells

37

have separate intervals, which are matched to the names of axes by position e.g. cell_methods="lat: lon:
standard_deviation (interval: 0.1 degree_N interval: 0.2 degree_E)", in which 0.1
degree applies to latitude and 0.2 degree to longitude.

If there is both standardized and non-standardized information, the non-standardized follows the standardized infor-
mation and the keyword comment:. For instance, an area-weighted mean over latitude could be indicated as lat:
mean (area-weighted) or lat: mean (interval: 1 degree_north comment: area-weight-
ed).

A dimension of size one may be the result of "collapsing" an axis by some statistical operation, for instance by calcu-
lating a variance from time series data. We strongly recommend that dimensions of size one be retained and used to
document the method and its domain.

Example 7.5. Surface air temperature variance

The variance of the diurnal cycle on 1 January 1990 has been calculated from hourly instantaneous surface air tem-
perature measurments. The time dimension of size one has been retained.

dimensions:
 lat=90;
 lon=180;
 time=1;
 nv=2;
variables:
 float TS_var(time,lat,lon);
 TS_var:long_name="surface air temperature variance"
 TS_var:units="K2";
 TS_var:cell_methods="time: variance (of hourly instantaneous)";
 float time(time);
 time:units="days since 1990-01-01 00:00:00";
 time:bounds="time_bnds";
 float time_bnds(time,nv);
data:
 time=.5;
 time_bnds=0.,1.;

Notice that a parenthesized comment in the cell_methods attribute provides the nature of the samples used to
calculate the variance.

The convention of specifying a cell method for a standard_name rather than for a dimension with a coordinate
variable is to allow one to provide an indication that a particular cell method is relevant to the data without having to
provide a precise description of the corresponding cell. There are two reasons for doing this.

• If the cell coordinate range cannot be precisely defined. For example, the Levitus ocean climatology uses any data
that exists. It is a time mean but the time range is not well defined, so cannot be stated.

• For convenience, if the cell extends over all valid coordinates. This is permitted only for the standard names lon-
gitude and latitude. Methods specified for these standard names are assumed to apply to the complete range
of longitude and latitude respectively. If in addition the data variable has a dimension with a corresponding labeled
axis that specifies a geographic region Section 6.1.1, “Geographic Regions”, the implied range of longitude and
latitude is the valid range for each specified region.

We recommend that whenever possible cell bounds should be supplied by giving the variable a dimension of size one
and attaching bounds to the associated coordinate variable.

Data Representative of Cells

38

7.4. Climatological Statistics
Climatological statistics may be derived from corresponding portions of the annual cycle in a set of years, e.g., the
average January temperatures in the climatology of 1961-1990, where the values are derived by averaging the 30
Januarys from the separate years. Portions of the climatological cycle are specified by references to dates within the
calendar year. However, a calendar year is not a well-defined unit of time, because it differs between leap years and
other years, and among calendars. Nonetheless for practical purposes we wish to compare statistics for months or
seasons from different calendars, and to make climatologies from a mixture of leap years and other years. Hence we
provide special conventions for indicating dates within the climatological year. Climatological statistics may also be
derived from corresponding portions of a range of days, for instance the average temperature for each hour of the
average day in April 1997. In addition the two concepts may be used at once, for instance to indicate not April 1997,
but the average April of the five years 1995-1999.

Climatological variables have a climatological time axis. Like an ordinary time axis, a climatological time axis may
have a dimension of unity (for example, a variable containing the January average temperatures for 1961-1990), but
often it will have several elements (for example, a climatological time axis with a dimension of 12 for the climatolog-
ical average temperatures in each month for 1961-1990, a dimension of 3 for the January mean temperatures for the
three decades 1961-1970, 1971-1980, 1981-1990, or a dimension of 24 for the hours of an average day). Intervals
of climatological time are conceptually different from ordinary time intervals; a given interval of climatological time
represents a set of subintervals which are not necessarily contiguous. To indicate this difference, a climatological time
coordinate variable does not have a bounds attribute. Instead, it has a climatology attribute, which names a vari-
able with dimensions (n,2), n being the dimension of the climatological time axis. Using the units and calendar of the
time coordinate variable, element (i,0) of the climatology variable specifies the beginning of the first subinterval and
element (i,1) the end of the last subinterval used to evaluate the climatological statistics with index i in the time dimen-
sion. The time coordinates should be values that are representative of the climatological time intervals, such that an
application which does not recognise climatological time will nonetheless be able to make a reasonable interpretation.

The COARDS standard offers limited support for climatological time. For compatibility with COARDS, time coordi-
nates should also be recognised as climatological if they have a units attribute of time-units relative to midnight on
1 January in year 0 i.e. since 0-1-1 in udunits syntax , and provided they refer to the real-world calendar. We do
not recommend this convention because (a) it does not provide any information about the intervals used to compute
the climatology, and (b) there is no standard for how dates since year 1 will be encoded with units having a reference
time in year 0, since this year does not exist; consequently there may be inconsistencies among software packages in
the interpretation of the time coordinates. Year 0 may be a valid year in non-real-world calendars, and therefore cannot
be used to signal climatological time in such cases.

A climatological axis may use different statistical methods to represent variation among years, within years and within
days. For example, the average January temperature in a climatology is obtained by averaging both within years
and over years. This is different from the average January-maximum temperature and the maximum January-average
temperature. For the former, we first calculate the maximum temperature in each January, then average these maxima;
for the latter, we first calculate the average temperature in each January, then find the largest one. As usual, the
statistical operations are recorded in the cell_methods attribute, which may have two or three entries for the
climatological time dimension.

Valid values of the cell_methods attribute must be in one of the forms from the following list. The intervals over
which various statistical methods are applied are determined by decomposing the date and time specifications of the
climatological time bounds of a cell, as recorded in the variable named by the climatology attribute. (The date and
time specifications must be calculated from the time coordinates expressed in units of "time interval since reference
date and time".) In the descriptions that follow we use the abbreviations y, m, d, H, M, and S for year, month, day,
hour, minute, and second respectively. The suffix 0 indicates the earlier bound and 1 the latter.

time: method1 within years time: method2 over years
method1 is applied to the time intervals (mdHMS0-mdHMS1) within individual years and method2 is applied
over the range of years (y0-y1).

Data Representative of Cells

39

time: method1 within days time: method2 over days
method1 is applied to the time intervals (HMS0-HMS1) within individual days and method2 is applied over the
days in the interval (ymd0-ymd1).

time: method1 within days time: method2 over days time: method3 over years
method1 is applied to the time intervals (HMS0-HMS1) within individual days and method2 is applied over the
days in the interval (md0-md1), and method3 is applied over the range of years (y0-y1).

The methods which can be specified are those listed in Appendix E, Cell Methods and each entry in the
cell_methods attribute may also, as usual, contain non-standardised information in parentheses after the method.
For instance, a mean over ENSO years might be indicated by "time: mean over years (ENSO years)".

When considering intervals within years, if the earlier climatological time bound is later in the year than the later
climatological time bound, it implies that the time intervals for the individual years run from each year across January
1 into the next year e.g. DJF intervals run from December 1 0:00 to March 1 0:00. Analogous situations arise for daily
intervals running across midnight from one day to the next.

When considering intervals within days, if the earlier time of day is equal to the later time of day, then the method
is applied to a full 24 hour day.

We have tried to make the examples in this section easier to understand by translating all time coordinate values to
date and time formats. This is not currently valid CDL syntax.

Example 7.6. Climatological seasons

This example shows the metadata for the average seasonal-minimum temperature for the four standard climatological
seasons MAM JJA SON DJF, made from data for March 1960 to February 1991.

dimensions:
 time=4;
 nv=2;
variables:
 float temperature(time,lat,lon);
 temperature:long_name="surface air temperature";
 temperature:cell_methods="time: minimum within years time: mean over years";
 temperature:units="K";
 double time(time);
 time:climatology="climatology_bounds";
 time:units="days since 1960-1-1";
 double climatology_bounds(time,nv);
data: // time coordinates translated to date/time format
 time="1960-4-16", "1960-7-16", "1960-10-16", "1961-1-16" ;
 climatology_bounds="1960-3-1", "1990-6-1",
 "1960-6-1", "1990-9-1",
 "1960-9-1", "1990-12-1",
 "1960-12-1", "1991-3-1" ;

Example 7.7. Decadal averages for January

Average January precipitation totals are given for each of the decades 1961-1970, 1971-1980, 1981-1990.

dimensions:

Data Representative of Cells

40

 time=3;
 nv=2;
variables:
 float precipitation(time,lat,lon);
 precipitation:long_name="precipitation amount";
 precipitation:cell_methods="time: sum within years time: mean over years";
 precipitation:units="kg m-2";
 double time(time);
 time:climatology="climatology_bounds";
 time:units="days since 1901-1-1";
 double climatology_bounds(time,nv);
data: // time coordinates translated to date/time format
 time="1965-1-15", "1975-1-15", "1985-1-15" ;
 climatology_bounds="1961-1-1", "1970-2-1",
 "1971-1-1", "1980-2-1",
 "1981-1-1", "1990-2-1" ;

Example 7.8. Temperature for each hour of the average day

Hourly average temperatures are given for April 1997.

dimensions:
 time=24;
 nv=2;
variables:
 float temperature(time,lat,lon);
 temperature:long_name="surface air temperature";
 temperature:cell_methods="time: mean within days time: mean over days";
 temperature:units="K";
 double time(time);
 time:climatology="climatology_bounds";
 time:units="hours since 1997-4-1";
 double climatology_bounds(time,nv);
data: // time coordinates translated to date/time format
 time="1997-4-1 0:30", "1997-4-1 1:30", ... "1997-4-1 23:30" ;
 climatology_bounds="1997-4-1 0:00", "1997-4-30 1:00",
 "1997-4-1 1:00", "1997-4-30 2:00",
 ...
 "1997-4-1 23:00", "1997-5-1 0:00" ;

Example 7.9. Temperature for each hour of the typical climatological day

This is a modified version of the previous example. It now applies to April from a 1961-1990 climatology.

variables:
 float temperature(time,lat,lon);
 temperature:long_name="surface air temperature";
 temperature:cell_methods="time: mean within days ",

Data Representative of Cells

41

 "time: mean over days time: mean over years";
 temperature:units="K";
 double time(time);
 time:climatology="climatology_bounds";
 time:units="days since 1961-1-1";
 double climatology_bounds(time,nv);
data: // time coordinates translated to date/time format
 time="1961-4-1 0:30", "1961-4-1 1:30", ..., "1961-4-1 23:30" ;
 climatology_bounds="1961-4-1 0:00", "1990-4-30 1:00",
 "1961-4-1 1:00", "1990-4-30 2:00",
 ...
 "1961-4-1 23:00", "1990-5-1 0:00" ;

Example 7.10. Monthly-maximum daily precipitation totals

Maximum of daily precipitation amounts for each of the three months June, July and August 2000 are given. The first
daily total applies to 6 a.m. on 1 June to 6 a.m. on 2 June, the 30th from 6 a.m. on 30 June to 6 a.m. on 1 July. The
maximum of these 30 values is stored under time index 0 in the precipitation array.

dimensions:
 time=3;
 nv=2;
variables:
 float precipitation(time,lat,lon);
 precipitation:long_name="Accumulated precipitation";
 precipitation:cell_methods="time: sum within days time: maximum over days";
 precipitation:units="kg";
 double time(time);
 time:climatology="climatology_bounds";
 time:units="days since 2000-6-1";
 double climatology_bounds(time,nv);
data: // time coordinates translated to date/time format
 time="2000-6-16", "2000-7-16", "2000-8-16" ;
 climatology_bounds="2000-6-1 6:00:00", "2000-7-1 6:00:00",
 "2000-7-1 6:00:00", "2000-8-1 6:00:00",
 "2000-8-1 6:00:00", "2000-9-1 6:00:00" ;

42

Chapter 8. Reduction of Dataset Size
There are two methods for reducing dataset size: packing and compression. By packing we mean altering the data in
a way that reduces its precision. By compression we mean techniques that store the data more efficiently and result
in no precision loss. Compression only works in certain circumstances, e.g., when a variable contains a significant
amount of missing or repeated data values. In this case it is possible to make use of standard utilities, e.g., UNIX
compress or GNU gzip, to compress the entire file after it has been written. In this section we offer an alternative
compression method that is applied on a variable by variable basis. This has the advantage that only one variable need
be uncompressed at a given time. The disadvantage is that generic utilities that don't recognize the CF conventions
will not be able to operate on compressed variables.

8.1. Packed Data
At the current time the netCDF interface does not provide for packing data. However a simple packing may be achieved
through the use of the optional NUG defined attributes scale_factor and add_offset. After the data values of
a variable have been read, they are to be multiplied by the scale_factor, and have add_offset added to them.
If both attributes are present, the data are scaled before the offset is added. When scaled data are written, the application
should first subtract the offset and then divide by the scale factor. The units of a variable should be representative
of the unpacked data.

This standard is more restrictive than the NUG with respect to the use of the scale_factor and add_offset
attributes; ambiguities and precision problems related to data type conversions are resolved by these restrictions. If
the scale_factor and add_offset attributes are of the same data type as the associated variable, the unpacked
data is assumed to be of the same data type as the packed data. However, if the scale_factor and add_offset
attributes are of a different data type from the variable (containing the packed data) then the unpacked data should
match the type of these attributes, which must both be of type float or both be of type double. An additional
restriction in this case is that the variable containing the packed data must be of type byte, short or int. It is not
advised to unpack an int into a float as there is a potential precision loss.

When data to be packed contains missing values the attributes that indicate missing values (_FillValue,
valid_min, valid_max, valid_range) must be of the same data type as the packed data. See Section 2.5.1,
“Missing Data” for a discussion of how applications should treat variables that have attributes indicating both missing
values and transformations defined by a scale and/or offset.

8.2. Compression by Gathering
To save space in the netCDF file, it may be desirable to eliminate points from data arrays that are invariably missing.
Such a compression can operate over one or more adjacent axes, and is accomplished with reference to a list of the
points to be stored. The list is constructed by considering a mask array that only includes the axes to be compressed, and
then mapping this array onto one dimension without reordering. The list is the set of indices in this one-dimensional
mask of the required points. In the compressed array, the axes to be compressed are all replaced by a single axis,
whose dimension is the number of wanted points. The wanted points appear along this dimension in the same order
they appear in the uncompressed array, with the unwanted points skipped over. Compression and uncompression are
executed by looping over the list.

The list is stored as the coordinate variable for the compressed axis of the data array. Thus, the list variable and its
dimension have the same name. The list variable has a string attribute compress, containing a blank-separated list
of the dimensions which were affected by the compression in the order of the CDL declaration of the uncompressed
array. The presence of this attribute identifies the list variable as such. The list, the original dimensions and coordinate
variables (including boundary variables), and the compressed variables with all the attributes of the uncompressed
variables are written to the netCDF file. The uncompressed variables can be reconstituted exactly as they were using
this information.

Reduction of Dataset Size

43

Example 8.1. Horizontal compression of a three-dimensional array

We eliminate sea points at all depths in a longitude-latitude-depth array of soil temperatures. In this case, only the
longitude and latitude axes would be affected by the compression. We construct a list landpoint(landpoint)
containing the indices of land points.

dimensions:
 lat=73;
 lon=96;
 landpoint=2381;
 depth=4;
variables:
 int landpoint(landpoint);
 landpoint:compress="lat lon";
 float landsoilt(depth,landpoint);
 landsoilt:long_name="soil temperature";
 landsoilt:units="K";
 float depth(depth);
 float lat(lat);
 float lon(lon);
data:
 landpoint=363, 364, 365, ...;

Since landpoint(0)=363, for instance, we know that landsoilt(*,0) maps on to point 363 of the original
data with dimensions (lat,lon). This corresponds to indices (3,75), i.e., 363 = 3*96 + 75.

Example 8.2. Compression of a three-dimensional field

We compress a longitude-latitude-depth field of ocean salinity by eliminating points below the sea-floor. In this case, all
three dimensions are affected by the compression, since there are successively fewer active ocean points at increasing
depths.

variables:
 float salinity(time,oceanpoint);
 int oceanpoint(oceanpoint);
 oceanpoint:compress="depth lat lon";
 float depth(depth);
 float lat(lat);
 float lon(lon);
 double time(time);

This information implies that the salinity field should be uncompressed to an array with dimensions
(depth,lat,lon).

44

Appendix A. Attributes
All CF attributes are listed here except for those that are used to describe grid mappings. See Appendix F for the grid
mapping attributes.

The "Type" values are S for string, N for numeric, and D for the type of the data variable. The "Use" values are G
for global, C for variables containing coordinate data, and D for variables containing non-coordinate data. "Links"
indicates the location of the attribute"s original definition (first link) and sections where the attribute is discussed in
this document (additional links as necessary).

Table A.1. Attributes

Attribute Type Use Links Description

add_offset N D NUG (8.1)1,
Section 8.1,

“Packed Data”

If present for a variable, this num-
ber is to be added to the data after
it is read by an application. If both
scale_factor and add_offset
attributes are present, the data are
first scaled before the offset is added.

ancillary_variables S D Section 3.4, “An-
cillary Data”

Identifies a variable that contains
closely associated data, e.g., the mea-
surement uncertainties of instrument
data.

axis S C Chapter 4, Co-
ordinate Types

Identifies latitude, longitude, vertical,
or time axes.

bounds S C Section 7.1, “Cell
Boundaries”

Identifies a boundary variable.

calendar S C Section 4.4.1,
“Calendar”

Calendar used for encoding time ax-
es.

cell_measures S D Section 7.2,
“Cell Measures”

Identifies variables that contain cell
areas or volumes.

cell_methods S D Section 7.3,
“Cell Methods”,

Section 7.4,
“Climatologi-
cal Statistics”

Records the method used to derive
data that represents cell values.

climatology S C Section 7.4,
“Climatologi-
cal Statistics”

Identifies a climatology variable.

comment S G, D Section 2.6.2,
“Description of
file contents”

Miscellaneous information about the
data or methods used to produce it.

compress S C Section 8.2,
“Compression
by Gathering”,

Section 5.3,

Records dimensions which have been
compressed by gathering.

1 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

Attributes

45

Attribute Type Use Links Description

“Reduced Hor-
izontal Grid”

Conventions S G NUG (8.1)2 Name of the conventions followed by
the dataset.

coordinates S D Chapter 5, Coor-
dinate Systems
, Section 6.1,

“Labels”, Sec-
tion 6.2, “Alterna-
tive Coordinates”

Identifies auxiliary coordinate vari-
ables, label variables, and alternate
coordinate variables.

_FillValue D D NUG (8.1)3 A value used to represent missing or
undefined data.

flag_masks D D Section 3.5,
“Flags”

Provides a list of bit fields expressing
Boolean or enumerated flags.

flag_meanings S D Section 3.5,
“Flags”

Use in conjunction with
flag_values to provide descrip-
tive words or phrases for each flag
value. If multi-word phrases are used
to describe the flag values, then the
words within a phrase should be con-
nected with underscores.

flag_values D D Section 3.5,
“Flags”

Provides a list of the flag val-
ues. Use in conjunction with
flag_meanings.

formula_terms S C Section 4.3.2,
“Dimension-
less Vertical
Coordinate”

Identifies variables that correspond to
the terms in a formula.

grid_mapping S D Section 5.6, “Grid
Mappings and

ProjectionsHor-
izontal Coordi-
nate Reference
Systems, Grid
Mappings, and
Projections”

Identifies a variable that defines a
grid mapping.

history S G NUG (8.1)4 List of the applications that have
modified the original data.

institution S G, D Section 2.6.2,
“Description of
file contents”

Where the original data was pro-
duced.

leap_month N C Section 4.4.1,
“Calendar”

Specifies which month is lengthened
by a day in leap years for a user de-
fined calendar.

2 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
3 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
4 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

Attributes

46

Attribute Type Use Links Description

leap_year N C Section 4.4.1,
“Calendar”

Provides an example of a leap year
for a user defined calendar. It is as-
sumed that all years that differ from
this year by a multiple of four are al-
so leap years.

long_name S C, D NUG (8.1)5,
Section 3.2,

“Long Name”

A descriptive name that indicates a
variable"s content. This name is not
standardized.

missing_value D D Section 2.5.1,
“Missing Data”

A value used to represent missing or
undefined data (deprecated by the
NUG).

month_lengths N C Section 4.4.1,
“Calendar”

Specifies the length of each month
in a non-leap year for a user defined
calendar.

positive S C [COARDS] Direction of increasing vertical coor-
dinate value.

references S G, D Section 2.6.2,
“Description of
file contents”

References that describe the data or
methods used to produce it.

scale_factor N D NUG (8.1)6,
Section 8.1,

“Packed Data”

If present for a variable, the data are
to be multiplied by this factor after
the data are read by an application
See also the add_offset attribute.

source S G, D Section 2.6.2,
“Description of
file contents”

Method of production of the original
data.

standard_error_multiplier N D Appendix C,
Standard Name

Modifiers

If a data variable with a
standard_name modifier of
standard_error has this attribute, it in-
dicates that the values are the stated
multiple of one standard error.

standard_name S C, D Section 3.3,
“Standard Name”

A standard name that references a de-
scription of a variable"s content in
the standard name table.

title S G NUG (8.1)7 Short description of the file contents.

units S C, D NUG (8.1)8, Sec-
tion 3.1, “Units”

Units of a variable"s content.

valid_max N C, D NUG (8.1)9 Largest valid value of a variable.

valid_min N C, D NUG (8.1)10 Smallest valid value of a variable.

5 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
6 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
7 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
8 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
9 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
10 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

Attributes

47

Attribute Type Use Links Description

valid_range N C, D NUG (8.1)11 Smallest and largest valid values of a
variable.

11 http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12
http://www.unidata.ucar.edu/packages/netcdf/guidef/guidef-13.html#HEADING13-12

48

Appendix B. Standard Name Table
Format
The CF standard name table is an XML document (i.e., its format adheres to the XML 1.0 [XML] recommendation).
The XML suite of protocols provides a reasonable balance between human and machine readability. It also provides
extensive support for internationalization. See the W3C [W3C] home page for more information.

The document begins with a header that identifies it as an XML file:

 <?xml version="1.0"?>

Next is the standard_name_table itself, which is bracketed by the tags <standard_name_table> and </
standard_name_table>.

 <standard_name_table
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="CFStandardNameTable.xsd">

The content (delimited by the <standard_name_table> tags) consists of, in order,

 <institution>Name of institution here ... </institution>
 <contact>E-mail address of contact person ... </contact>

followed by a sequence of entry elements which may optionally be followed by a sequence of alias elements.
The entry and alias elements take the following forms:

 <entry id="an_id">
 Define the variable whose standard_name attribute has the value "an_id".
 </entry>
 <alias id="another_id">
 Provide alias for a variable whose standard_name attribute has the
 value "another_id".
 </alias>

The value of the id attribute appearing in the entry and alias tags is a case sensitive string, containing no white-
space, which uniquely identifies the entry relative to the table. This is the value used for a variable's standard_name
attribute.

Standard Name Table Format

49

The purpose of the entry elements are to provide definitions for the id strings. Each entry element contains the
following elements:

 <entry id="an_id">
 <canonical_units>Representative units for the variable ... </canonical_units>
 <description>Description of the variable ... </description>
 </entry>

Entry elements may optionally also contain the following elements:

 <grib>GRIB parameter code</grib>
 <amip>AMIP identifier string</amip>

Not all variables have equivalent AMIP or GRIB codes. ECMWF GRIB codes start with E, NCEP codes with N.
Standard codes (in the range 1-127) are not prefaced. When a variable has more than one equivalent GRIB code, the
alternatives are given as a blank-separated list.

The alias elements do not contain definitions. Rather they contain the value of the id attribute of an entry element
that contains the sought after definition. The purpose of the alias elements are to provide a means for maintaining
the table in a backwards compatible fashion. For example, if more than one id string was found to correspond to
identical definitions, then the redundant definitions can be converted into aliases. It is not intended that the alias
elements be used to accommodate the use of local naming conventions in the standard_name attribute strings.
Each alias element contains a single element:

 <alias id="an_id">
 <entry_id>Identifier of the defining entry ... </entry_id>
 </alias>

Example B.1. A name table containing three entries

 <?xml version="1.0"?>
 <standard_name_table>
 <institution>Program for Climate Model Diagnosis and Intercomparison</institution>
 <contact>support@pcmdi.llnl.gov</contact>
 <entry id="surface_air_pressure">
 <canonical_units>Pa</canonical_units>
 <grib>E134</grib>
 <amip>ps</amip>
 <description>
 The surface called "surface" means the lower boundary of the atmosphere.

Standard Name Table Format

50

 </description>
 </entry>
 <entry id="air_pressure_at_sea_level">
 <canonical_units>Pa</canonical_units>
 <grib>2 E151</grib>
 <amip>psl</amip>
 <description>
 Air pressure at sea level is the quantity often abbreviated
 as MSLP or PMSL. sea_level means mean sea level, which is close
 to the geoid in sea areas.
 </description>
 </entry>
 <alias id="mean_sea_level_pressure">
 <entry_id>air_pressure_at_sea_level</entry_id>
 </alias>
 </standard_name_table>

The definition of a variable with the standard_name attribute surface_air_pressure is found directly since
the element with id="surface_air_pressure" is an entry element which contains the definition.

The definition of a variable with the standard_name attribute mean_sea_level_pressure is found indi-
rectly by first finding the element with the id="mean_sea_level_pressure", and then, since this is an alias
element, by searching for the element with id="air_pressure_at_sea_level" as indicated by the value of
the entry_id tag.

It is possible that new tags may be added in the future. Any applications that parse the standard table should be written
so that unrecognized tags are gracefully ignored.

51

Appendix C. Standard Name Modifiers
In the Units column, u indicates units dimensionally equivalent to those for the unmodified standard name.

Table C.1. Standard Name Modifiers

Modifier Units Description

detection_minimum u The smallest data value which is regarded as a detectable signal.

number_of_observations 1 The number of discrete observations or measurements from
which a data value has been derived.

standard_error u The uncertainty of the data value. The standard error includes
both systematic and statistical uncertainty. By default it is as-
sumed that the values supplied are for one standard error. If the
values supplied are for some multiple of the standard error, the
standard_error ancillary variable should have an attribute
standard_error_multiplier stating the multiplication
factor.

status_flag Flag values indicating the quality or other status of the data val-
ues. The variable should have flag_values or flag_masks
(or both) and flag_meanings attributes to show how it
should be interpreted (Section 3.5, “Flags”).

52

Appendix D. Dimensionless Vertical
Coordinates
The definitions given here allow an application to compute dimensional coordinate values from the dimensionless ones
and associated variables. The formulas are expressed for a gridpoint (n,k,j,i) where i and j are the horizontal
indices, k is the vertical index and n is the time index. A coordinate variable is associated with its definition by
the value of the standard_name attribute. The terms in the definition are associated with file variables by the
formula_terms attribute. The formula_terms attribute takes a string value, the string being comprised of
blank-separated elements of the form "term: variable", where term is a keyword that represents one of the
terms in the definition, and variable is the name of the variable in a netCDF file that contains the values for that
term. The order of elements is not significant.

The gridpoint indices are not formally part of the definitions, but are included to illustrate the indices that might be
present in the file variables. For example, a vertical coordinate whose definition contains a time index is not necessarily
time dependent in all netCDF files. Also, the definitions are given in general forms that may be simplified by omitting
certain terms. A term that is omitted from the formula_terms attribute should be assumed to be zero.

Atmosphere natural log pressure coordinate

standard_name = "atmosphere_ln_pressure_coordinate"

Definition:

p(k) = p0 * exp(-lev(k))

where p(k) is the pressure at gridpoint (k), p0 is a reference pressure, lev(k) is the dimensionless coordinate
at vertical gridpoint (k).

The format for the formula_terms attribute is

formula_terms = "p0: var1 lev: var2"

Atmosphere sigma coordinate

standard_name = "atmosphere_sigma_coordinate"

Definition:

p(n,k,j,i) = ptop + sigma(k)*(ps(n,j,i)-ptop)

where p(n,k,j,i) is the pressure at gridpoint (n,k,j,i), ptop is the pressure at the top of the model,
sigma(k) is the dimensionless coordinate at vertical gridpoint (k), and ps(n,j,i) is the surface pressure at
horizontal gridpoint (j,i) and time (n).

Dimensionless Vertical Coordinates

53

The format for the formula_terms attribute is

formula_terms = "sigma: var1 ps: var2 ptop: var3"

Atmosphere hybrid sigma pressure coordinate

standard_name = "atmosphere_hybrid_sigma_pressure_coordinate"

Definition:

p(n,k,j,i) = a(k)*p0 + b(k)*ps(n,j,i)

or

p(n,k,j,i) = ap(k) + b(k)*ps(n,j,i)

where p(n,k,j,i) is the pressure at gridpoint (n,k,j,i), a(k) or ap(k) and b(k) are components of the
hybrid coordinate at level k, p0 is a reference pressure, and ps(n,j,i) is the surface pressure at horizontal gridpoint
(j,i) and time (n). The choice of whether a(k) or ap(k) is used depends on model formulation; the former is a
dimensionless fraction, the latter a pressure value. In both formulations, b(k) is a dimensionless fraction.

The format for the formula_terms attribute is

formula_terms = "a: var1 b: var2 ps: var3 p0: var4"

where a is replaced by ap if appropriate.

The hybrid sigma-pressure coordinate for level k is defined as a(k)+b(k) or ap(k)/p0+b(k), as appropriate.

Atmosphere hybrid height coordinate

standard_name = "atmosphere_hybrid_height_coordinate"

Definition:

z(n,k,j,i) = a(k) + b(k)*orog(n,j,i)

where z(n,k,j,i) is the height above the geoid (approximately mean sea level) at gridpoint (k,j,i) and time
(n), orog(n,j,i) is the height of the surface above the geoid at (j,i) and time (n), and a(k) and b(k) are
the coordinates which define hybrid height level k. a(k) has the dimensions of height and b(i) is dimensionless.

The format for the formula_terms attribute is

Dimensionless Vertical Coordinates

54

formula_terms = "a: var1 b: var2 orog: var3"

There is no dimensionless hybrid height coordinate. The hybrid height is best approximated as a(k) if a level-depen-
dent constant is needed.

Atmosphere smooth level vertical (SLEVE) co-
ordinate

standard_name = "atmosphere_sleve_coordinate"

Definition:

z(n,k,j,i) = a(k)*ztop + b1(k)*zsurf1(n,j,i) + b2(k)*zsurf2(n,j,i)

where z(n,k,j,i) is the height above the geoid (approximately mean sea level) at gridpoint (k,j,i) and time
(n), ztop is the height of the top of the model, and a(k), b1(k), and b2(k) are the dimensionless coordinates
which define hybrid level k. zsurf1(n,j,i) and zsurf2(n,j,i) are respectively the large and small parts of
the topography. See Shaer et al [SCH02] for details.

The format for the formula_terms attribute is

formula_terms = "a: var1 b1: var2 b2: var3 ztop: var4 zsurf1: var5
 zsurf2: var6"

The hybrid height coordinate for level k is defined as a(k)*ztop.

Ocean sigma coordinate

standard_name = "ocean_sigma_coordinate"

Definition:

z(n,k,j,i) = eta(n,j,i) + sigma(k)*(depth(j,i)+eta(n,j,i))

where z(n,k,j,i) is height, positive upwards, relative to ocean datum (e.g. mean sea level) at gridpoint
(n,k,j,i), eta(n,j,i) is the height of the ocean surface, positive upwards, relative to ocean datum at gridpoint
(n,j,i), sigma(k) is the dimensionless coordinate at vertical gridpoint (k), and depth(j,i) is the distance
from ocean datum to sea floor (positive value) at horizontal gridpoint (j,i).

The format for the formula_terms attribute is

Dimensionless Vertical Coordinates

55

formula_terms = "sigma: var1 eta: var2 depth: var3"

Ocean s-coordinate

standard_name = "ocean_s_coordinate"

Definition:

z(n,k,j,i) = eta(n,j,i)*(1+s(k)) + depth_c*s(k) +
 (depth(j,i)-depth_c)*C(k)

 C(k) = (1-b)*sinh(a*s(k))/sinh(a) +
 b*[tanh(a*(s(k)+0.5))/(2*tanh(0.5*a)) - 0.5]

where z(n,k,j,i) is height, positive upwards, relative to ocean datum (e.g. mean sea level) at gridpoint
(n,k,j,i), eta(n,j,i) is the height of the ocean surface, positive upwards, relative to ocean datum at gridpoint
(n,j,i), s(k) is the dimensionless coordinate at vertical gridpoint (k), and depth(j,i) is the distance from
ocean datum to sea floor (positive value) at horizontal gridpoint (j,i). The constants a, b, and depth_c control
the stretching.

The format for the formula_terms attribute is

formula_terms = "s: var1 eta: var2 depth: var3 a: var4 b: var5 depth_c: var6"

Ocean sigma over z coordinate

standard_name = "ocean_sigma_z_coordinate"

Definition:

for k <= nsigma:

 z(n,k,j,i) = eta(n,j,i) + sigma(k)*(min(depth_c,depth(j,i))+eta(n,j,i))

for k > nsigma:

 z(n,k,j,i) = zlev(k)

where z(n,k,j,i) is height, positive upwards, relative to ocean datum (e.g. mean sea level) at gridpoint
(n,k,j,i), eta(n,j,i) is the height of the ocean surface, positive upwards, relative to ocean datum at grid-
point (n,j,i), sigma(k) is the dimensionless coordinate at vertical gridpoint (k) for k <= nsigma, and
depth(j,i) is the distance from ocean datum to sea floor (positive value) at horizontal gridpoint (j,i). Above
depth depth_c there are nsigma layers.

Dimensionless Vertical Coordinates

56

The format for the formula_terms attribute is

formula_terms = "sigma: var1 eta: var2 depth: var3 depth_c: var4 nsigma: var5
 zlev: var6"

Ocean double sigma coordinate

standard_name = "ocean_double_sigma_coordinate"

Definition:

for k <= k_c

 z(k,j,i)= sigma(k)*f(j,i)

for k > k_c

 z(k,j,i)= f(j,i) + (sigma(k)-1)*(depth(j,i)-f(j,i))

f(j,i)= 0.5*(z1+ z2) + 0.5*(z1-z2)* tanh(2*a/(z1-z2)*(depth(j,i)-href))

where z(k,j,i) is height, positive upwards, relative to ocean datum (e.g. mean sea level) at gridpoint (k,j,i),
sigma(k) is the dimensionless coordinate at vertical gridpoint (k) for k <= k_c, and depth(j,i) is the distance
from ocean datum to sea floor (positive value) at horizontal gridpoint (j,i). z1, z2, a, and href are constants.

The format for the formula_terms attribute is

formula_terms = "sigma: var1 depth: var2 z1: var3 z2: var4 a: var5 href: var6
 k_c: var7"

57

Appendix E. Cell Methods
In the Units column, u indicates the units of the physical quantity before the method is applied.

Table E.1. Cell Methods

cell_method Units Description

point u The data values are representative of points in space or time (in-
stantaneous). This is the default method for a quantity that is in-
tensive with respect to the specified dimension.

sum u The data values are representative of a sum or accumulation over
the cell. This is the default method for a quantity that is extensive
with respect to the specified dimension.

maximum u Maximum

median u Median

mid_range u Average of maximum and minimum

minimum u Minimum

mean u Mean (average value)

mode u Mode (most common value)

standard_deviation u Standard deviation

variance u2 Variance

58

Appendix F. Grid Mappings
Each recognized grid mapping is described in one of the sections below. Each section contains: the valid name that
is used with the grid_mapping_name attribute; a list of the specific attributes that may be used to assign values
to the mapping's parameters; the standard names used to identify the coordinate variables that contain the mapping's
independent variables; and references to the mapping's definition or other information that may help in using the map-
ping. Since the attributes used to set a mapping's parameters may be shared among several mappings, their definitions
are contained in a table in the final section. The attributes which describe the ellipsoid and prime meridian may be
included, when applicable, with any grid mapping.

We have used the FGDC "Content Standard for Digital Geospatial Metadata" [FGDC] as a guide in choosing the
values for grid_mapping_name and the attribute names for the parameters describing map projections.

Albers Equal Area

grid_mapping_name = albers_conical_equal_area

Map parameters:

• standard_parallel - There may be 1 or 2 values.

• longitude_of_central_meridian

• latitude_of_projection_origin

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Notes on using the PROJ.4 software package for computing the mapping may be found at http://
www.remotesensing.org/geotiff/proj_list/albers_equal_area_conic.html.

Azimuthal equidistant

grid_mapping_name = azimuthal_equidistant

Map parameters:

• longitude_of_projection_origin

• latitude_of_projection_origin

• false_easting

• false_northing

http://www.remotesensing.org/geotiff/proj_list/albers_equal_area_conic.html
http://www.remotesensing.org/geotiff/proj_list/albers_equal_area_conic.html

Grid Mappings

59

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Notes on using the PROJ.4 software package for computing the mapping may be found at http://
www.remotesensing.org/geotiff/proj_list/azimuthal_equidistant.html.

Lambert azimuthal equal area

grid_mapping_name = lambert_azimuthal_equal_area

Map parameters:

• longitude_of_projection_origin

• latitude_of_projection_origin

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Notes on using the PROJ.4 software package for computing the mapping may be found at http://
www.remotesensing.org/geotiff/proj_list/lambert_azimuthal_equal_area.html.

Lambert conformal

grid_mapping_name = lambert_conformal_conic

Map parameters:

• standard_parallel - There may be 1 or 2 values.

• longitude_of_central_meridian

• latitude_of_projection_origin

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Notes on using the PROJ.4 software package for computing the mapping may be found at http://
www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_2sp.html.

http://www.remotesensing.org/geotiff/proj_list/azimuthal_equidistant.html
http://www.remotesensing.org/geotiff/proj_list/azimuthal_equidistant.html
http://www.remotesensing.org/geotiff/proj_list/lambert_azimuthal_equal_area.html
http://www.remotesensing.org/geotiff/proj_list/lambert_azimuthal_equal_area.html
http://www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_2sp.html
http://www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_2sp.html

Grid Mappings

60

Latitude-Longitude

grid_mapping_name = latitude_longitude

This grid mapping defines the canonical 2D geographical coordinate system based upon latitude and longitude coor-
dinates on a spherical Earth. It is included so that the figure of the Earth can be described.

Map parameters:
None.

Map coordinates:
The rectangular coordinates are longitude and latitude identified by the usual conventions (Section 4.1, “Latitude
Coordinate” and Section 4.2, “Longitude Coordinate”).

Polar stereographic

grid_mapping_name = polar_stereographic

Map parameters:

• straight_vertical_longitude_from_pole

• latitude_of_projection_origin - Either +90. or -90.

• Either standard_parallel or scale_factor_at_projection_origin

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Notes on using the PROJ.4 software package for computing the mapping may be found at http://
www.remotesensing.org/geotiff/proj_list/polar_stereographic.html.

Rotated pole

grid_mapping_name = rotated_latitude_longitude

Map parameters:

• grid_north_pole_latitude

• grid_north_pole_longitude

• north_pole_grid_longitude - This parameter is option (default is 0).

http://www.remotesensing.org/geotiff/proj_list/polar_stereographic.html
http://www.remotesensing.org/geotiff/proj_list/polar_stereographic.html

Grid Mappings

61

Map coordinates:
The rotated latitude and longitude coordinates are identified by the standard_name attribute values
grid_latitude and grid_longitude respectively.

Notes:

Stereographic

grid_mapping_name = stereographic

Map parameters:

• longitude_of_projection_origin

• latitude_of_projection_origin

• scale_factor_at_projection_origin

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Formulas for the mapping and its inverse along with notes on using the PROJ.4 software package for doing the
calcuations may be found at http://www.remotesensing.org/geotiff/proj_list/stereographic.html. See the section
"Polar stereographic" for the special case when the projection origin is one of the poles.

Transverse Mercator

grid_mapping_name = transverse_mercator

Map parameters:

• scale_factor_at_central_meridian

• longitude_of_central_meridian

• latitude_of_projection_origin

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute values
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Formulas for the mapping and its inverse along with notes on using the PROJ.4 software package for doing the
calcuations may be found at http://www.remotesensing.org/geotiff/proj_list/transverse_mercator.html.

http://www.remotesensing.org/geotiff/proj_list/stereographic.html
http://www.remotesensing.org/geotiff/proj_list/transverse_mercator.html

Grid Mappings

62

Vertical perspective

grid_mapping_name = vertical_perspective

Map parameters:

• latitude_of_projection_origin

• longitude_of_projection_origin

• perspective_point_height

• false_easting

• false_northing

Map coordinates:
The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute value
projection_x_coordinate and projection_y_coordinate respectively.

Notes:
Notes on using the PROJ.4 software packages for computing the mapping may be found at http://
www.remotesensing.org/geotiff/proj_list/geos.html . These notes assume the point of perspective is directly over
the equator. A more general description of vertical perspective projection is given in [Snyder], pages 169-181.

In the following table the "Type" values are S for string and N for numeric.

Table F.1. Grid Mapping Attributes

Attribute Type Description

earth_radius N Used to specify the radius, in metres, of the spheri-
cal figure used to approximate the shape of the Earth.
This attribute should be specified for those projected
coordinate reference systems in which the X-Y carte-
sian coordinates have been derived using a spheri-
cal Earth approximation. If the cartesian coordinates
were derived using an ellipsoid, this attribute should
not be defined. Example: "6371007", which is the ra-
dius of the GRS 1980 Authalic Sphere.

false_easting N The value added to all abscissa values in the rec-
tangular coordinates for a map projection. This
value frequently is assigned to eliminate nega-
tive numbers. Expressed in the unit of the coor-
dinate variable identified by the standard name
projection_x_coordinate.

false_northing N The value added to all ordinate values in the rec-
tangular coordinates for a map projection. This
value frequently is assigned to eliminate nega-
tive numbers. Expressed in the unit of the coor-
dinate variable identified by the standard name
projection_y_coordinate.

grid_mapping_name N The name used to identify the grid mapping.

http://www.remotesensing.org/geotiff/proj_list/geos.html
http://www.remotesensing.org/geotiff/proj_list/geos.html

Grid Mappings

63

Attribute Type Description

grid_north_pole_latitude N True latitude (degrees_north) of the north pole of the
rotated grid.

grid_north_pole_longitude N True longitude (degrees_east) of the north pole of the
rotated grid.

inverse_flattening N Used to specify the inverse flattening (1/f) of the
ellipsoidal figure associated with the geodetic da-
tum and used to approximate the shape of the Earth.
The flattening (f) of the ellipsoid is related to the
semi-major and semi-minor axes by the formula f
= (a-b)/a. In the case of a spherical Earth this at-
tribute should be omitted or set to zero. Example:
298.257222101 for the GRS 1980 ellipsoid. (Note:
By convention the dimensions of an ellipsoid are
specified using either the semi-major and semi-minor
axis lengths, or the semi-major axis length and the in-
verse flattening. If all three attributes are specified
then the supplied values must be consistent with the
aforementioned formula.)

latitude_of_projection_origin N The latitude chosen as the origin of rectangular co-
ordinates for a map projection. Domain: -90.0
<= latitude_of_projection_origin <=
90.0

longitude_of_central_meridian N The line of longitude at the center of a map
projection generally used as the basis for con-
structing the projection. Domain: -180.0 <=
longitude_of_central_meridian <
180.0

longitude_of_prime_meridian N Specifies the longitude, with respect to Greenwich,
of the prime meridian associated with the geodetic
datum. The prime meridian defines the origin from
which longitude values are determined. Not to be
confused with the projection origin longitude (cf.
longitude_of_projection_origin, a.k.a.
central meridian) which defines the longitude of
the map projection origin. Domain: -180.0 <=
longitude_of_prime_meridian < 180.0
decimal degrees. Default = 0.0

longitude_of_projection_origin N The longitude chosen as the origin of rectangular co-
ordinates for a map projection. Domain: -180.0
<= longitude_of_projection_origin <
180.0

north_pole_grid_longitude N Longitude (degrees) of the true north pole in the ro-
tated grid.

perspective_point_height N Records the height, in metres, of the map projection
perspective point above the ellipsoid (or sphere).
Used by perspective-type map projections, for exam-
ple the Vertical Perspective Projection, which may be
used to simulate the view from a Meteosat satellite.

Grid Mappings

64

Attribute Type Description

scale_factor_at_central_meridian N A multiplier for reducing a distance obtained
from a map by computation or scaling to the ac-
tual distance along the central meridian. Domain:
scale_factor_at_central_meridian >
0.0

scale_factor_at_projection_origin N A multiplier for reducing a distance obtained
from a map by computation or scaling to the ac-
tual distance at the projection origin. Domain:
scale_factor_at_projection_origin >
0.0

semi_major_axis N Specifies the length, in metres, of the semi-major ax-
is of the ellipsoidal figure associated with the geo-
detic datum and used to approximate the shape of
the Earth. Commonly denoted using the symbol a. In
the case of a spherical Earth approximation this at-
tribute defines the radius of the Earth. See also the
inverse_flattening attribute.

semi_minor_axis N Specifies the length, in metres, of the semi-minor ax-
is of the ellipsoidal figure associated with the geo-
detic datum and used to approximate the shape of the
Earth. Commonly denoted using the symbol b. In the
case of a spherical Earth approximation this attribute
should be omitted (the preferred option) or else set
equal to the value of the semi_major_axis attribute.
See also the inverse_flattening attribute.

standard_parallel N Specifies the line, or lines, of latitude at which the
developable map projection surface (plane, cone, or
cylinder) touches the reference sphere or ellipsoid
used to represent the Earth. Since there is zero scale
distortion along a standard parallel it is also referred
to as a "latitude of true scale". In the situation where
a conical developable surface intersects the reference
ellipsoid there are two standard parallels, in which
case this attribute can be used as a vector to record
both latitude values, with the additional convention
that the standard parallel nearest the pole (N or S) is
provided first. Line of constant latitude at which the
surface of the Earth and plane or developable surface
intersect. This attribute may be vector valued if two
standard parallels are specified. Domain: -90.0
<= standard_parallel <= 90.0

straight_vertical_longitude_from_poleN The longitude to be oriented straight up from
the North or South Pole. Domain: -180.0 <=
straight_vertical_longitude_from_pole
< 180.0

65

Appendix G. Revision History
14 June 2004

1. Added the section called “Lambert azimuthal equal area”.
2. the section called “Polar stereographic”: Added latitude_of_projection_origin map parameter.

1 July 2004

1. Section 5.7, “Scalar Coordinate Variables”: Added note that use of scalar coordinate variables inhibits interop-
erability with COARDS conforming applications.

2. Example 5.11, “Multiple forecasts from a single analysis”: Added positive attribute to the scalar coordinate
p500 to make it unambiguous that the pressure is a vertical coordinate value.

20 September 2004

1. Section 7.3, “Cell Methods”: Changed several incorrect occurances of the cell method "standard devia-
tion" to "standard_deviation".

22 October 2004

1. Added Example 5.7, “Lambert conformal projection”.

25 November 2005

1. the section called “ Atmosphere hybrid height coordinate ”: Fixed definition of atmosphere hybrid height co-
ordinate.

21 March 2006

1. Added the section called “Azimuthal equidistant”.
2. Added the section called “ Atmosphere natural log pressure coordinate ”.

17 January 2008

1. Preface: Changed text to refer to rules of CF governance, and provisional status.
2. Chapter 4, Coordinate Types , Chapter 5, Coordinate Systems : Made changes regarding use of the axis attribute

to identify horizontal coordinate variables.
3. Changed document version to 1.1.

4 May 2008

1. Section 5.6, “Grid Mappings and ProjectionsHorizontal Coordinate Reference Systems, Grid Mappings, and
Projections”, Appendix F, Grid Mappings : Additions and revisions to CF grid mapping attributes to support
the specification of coordinate reference system properties (Trac ticket #18)1.

2. Table 3.1, “Supported Units” : Corrected Prefix for Factor "1e-2" from "deci" to "centi". (Trac ticket #25)2.
3. Changed document version to 1.2.

15 July 2008

1 http://cf-pcmdi.llnl.gov/trac/ticket/18
2 http://cf-pcmdi.llnl.gov/trac/ticket/25

http://cf-pcmdi.llnl.gov/trac/ticket/18
http://cf-pcmdi.llnl.gov/trac/ticket/25
http://cf-pcmdi.llnl.gov/trac/ticket/18
http://cf-pcmdi.llnl.gov/trac/ticket/25

Revision History

66

1. Section 3.5, “Flags”, Appendix A, Attributes, Appendix C, Standard Name Modifiers : Enhanced the Flags
definition to support bit field notation using a flag_masks attribute. (Trac ticket #26)3.

2. Changed document version to 1.3.

9 October 2008

1. Fixed defect in Example 4.3, “Atmosphere sigma coordinate”. (Trac ticket #30)4.
2. Fixed defect in Chapter 5, Coordinate Systems . (Trac ticket #32)5.

7 November 2008

1. Fixed defect in wording of Chapter 5, Coordinate Systems . (Trac ticket #35)6.
2. Fixed defect related to subsection headings in Appendix D, Dimensionless Vertical Coordinates. (Trac ticket

#36)7.

3 http://cf-pcmdi.llnl.gov/trac/ticket/26
4 http://cf-pcmdi.llnl.gov/trac/ticket/30
5 http://cf-pcmdi.llnl.gov/trac/ticket/32
6 http://cf-pcmdi.llnl.gov/trac/ticket/35
7 http://cf-pcmdi.llnl.gov/trac/ticket/36

http://cf-pcmdi.llnl.gov/trac/ticket/26
http://cf-pcmdi.llnl.gov/trac/ticket/30
http://cf-pcmdi.llnl.gov/trac/ticket/32
http://cf-pcmdi.llnl.gov/trac/ticket/35
http://cf-pcmdi.llnl.gov/trac/ticket/36
http://cf-pcmdi.llnl.gov/trac/ticket/36
http://cf-pcmdi.llnl.gov/trac/ticket/26
http://cf-pcmdi.llnl.gov/trac/ticket/30
http://cf-pcmdi.llnl.gov/trac/ticket/32
http://cf-pcmdi.llnl.gov/trac/ticket/35
http://cf-pcmdi.llnl.gov/trac/ticket/36

67

Bibliography
References
[COARDS] Conventions for the standardization of NetCDF Files 1 . Sponsored by the "Cooperative Ocean/Atmos-

phere Research Data Service," a NOAA/university cooperative for the sharing and distribution of global at-
mospheric and oceanographic research data sets . May 1995.

[FGDC] Content Standard for Digital Geospatial Metadata2 . Federal Geographic Data Committee, FGDC-
STD-001-1998 .

[NetCDF] NetCDF Software Package3 . UNIDATA Program Center of the University Corporation for Atmospheric
Research .

[NUG] NetCDF User's Guide for Fortran: An Access Interface for Self-Describing Portable Data; version 3 4 . Russ
Rew, Glenn Davis, Steve Emmerson, and Harvey Davies. June 1997.

[OGP/EPSG] OGP Surveying & Positioning Committee5 and EPSG Geodetic Parameter Registry6 .

[SCH02] C Schaer, D Leuenberger, and O Fuhrer. 2002. “ A new terrain-following vertical coordiante formulation for
atmospheric prediction models ”. Monthly Weather Review . 130 . 2459-2480.

[Snyder] Map Projections: A Working Manual 7 . USGS Professional Paper 1395.

[UDUNITS] UDUNITS Software Package 8 . UNIDATA Program Center of the University Corporation for Atmos-
pheric Research .

[W3C] World Wide Web Consortium (W3C)9 .

[XML] Extensible Markup Language (XML) 1.0 10 . T. Bray, J. Paoli, and C.M. Sperberg-McQueen. 10 February
1998 .

1 http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
2 http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/v2_0698.pdf
3 http://www.unidata.ucar.edu/packages/netcdf/index.html
4 http://www.unidata.ucar.edu/packages/netcdf/guidef/
5 http://www.epsg.org
6 http://www.epsg-registry.org
7 http://pubs.er.usgs.gov/usgspubs/pp/pp1395
8 http://www.unidata.ucar.edu/packages/udunits/
9 http://www.w3.org/
10 http://www.w3.org/TR/1998/REC-xml-19980210

http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/v2_0698.pdf
http://www.unidata.ucar.edu/packages/netcdf/index.html
http://www.unidata.ucar.edu/packages/netcdf/guidef/
http://www.epsg.org
http://www.epsg-registry.org
http://pubs.er.usgs.gov/usgspubs/pp/pp1395
http://www.unidata.ucar.edu/packages/udunits/
http://www.w3.org/
http://www.w3.org/TR/1998/REC-xml-19980210
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/v2_0698.pdf
http://www.unidata.ucar.edu/packages/netcdf/index.html
http://www.unidata.ucar.edu/packages/netcdf/guidef/
http://www.epsg.org
http://www.epsg-registry.org
http://pubs.er.usgs.gov/usgspubs/pp/pp1395
http://www.unidata.ucar.edu/packages/udunits/
http://www.w3.org/
http://www.w3.org/TR/1998/REC-xml-19980210

